BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ye J, Wang Z, Chen X, Jiang X, Dong Z, Hu S, Li W, Liu Y, Liao B, Han W, Shen J, Xiao M. YTHDF1-enhanced iron metabolism depends on TFRC m6A methylation. Theranostics 2020;10:12072-89. [PMID: 33204330 DOI: 10.7150/thno.51231] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Chen S, Wei S, Cheng S, Shi R, Zhao R, Zhang W, Zhang Q, Hua T, Feng D, Yu Z, Wang H. CircRAPGEF5 interacts with RBFOX2 to confer ferroptosis resistance by modulating alternative splicing of TFRC in endometrial cancer. Redox Biol 2022;57:102493. [PMID: 36182807 DOI: 10.1016/j.redox.2022.102493] [Reference Citation Analysis]
2 Cheung JCT, Deng G, Wong N, Dong Y, Ng SSM. More than a duologue: In-depth insights into epitranscriptomics and ferroptosis. Front Cell Dev Biol 2022;10:982606. [DOI: 10.3389/fcell.2022.982606] [Reference Citation Analysis]
3 Zuo X, Zeng H, Wang B, Yang X, He D, Wang L, Ouyang H, Yuan J. AKR1C1 Protects Corneal Epithelial Cells Against Oxidative Stress-Mediated Ferroptosis in Dry Eye. Invest Ophthalmol Vis Sci 2022;63:3. [PMID: 36066316 DOI: 10.1167/iovs.63.10.3] [Reference Citation Analysis]
4 Chen Q, He X, Li B, Chen J, Tang X. Suppression of Long Noncoding RNA SNHG1 Inhibits the Development of Hypopharyngeal Squamous Cell Carcinoma via Increasing PARP6 Expression. Evid Based Complement Alternat Med 2022;2022:1562219. [PMID: 35836822 DOI: 10.1155/2022/1562219] [Reference Citation Analysis]
5 Yin X, Gao J, Liu Z, Han M, Ji X, Wang Z, Li Y, He D, Zhang F, Liu Q, Xin T. Mechanisms of long non-coding RNAs in biological phenotypes and ferroptosis of glioma. Front Oncol 2022;12:941327. [DOI: 10.3389/fonc.2022.941327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ye J, Chen X, Jiang X, Dong Z, Hu S, Xiao M. RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m6 A-IGF2BP2-dependent manner. J Clin Lab Anal 2022;36:e24514. [PMID: 35689537 DOI: 10.1002/jcla.24514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wu Q, Li B, Li Y, Liu F, Yang L, Ma Y, Zhang Y, Xu D, Li Y. Effects of PAMK on lncRNA, miRNA, and mRNA expression profiles of thymic epithelial cells. Funct Integr Genomics 2022. [PMID: 35505120 DOI: 10.1007/s10142-022-00863-7] [Reference Citation Analysis]
8 Huang C, Zhang K, Guo Y, Shen C, Liu X, Huang H, Dou X, Yu B. The crucial roles of m6A RNA modifications in cutaneous cancers: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Genes & Diseases 2022. [DOI: 10.1016/j.gendis.2022.03.006] [Reference Citation Analysis]
9 Sun Y, Dong D, Xia Y, Hao L, Wang W, Zhao C. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis 2022;13:230. [PMID: 35279688 DOI: 10.1038/s41419-022-04672-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Deng L, Deng W, Fan S, Chen M, Qi M, Lyu W, Qi Q, Tiwari AK, Chen J, Zhang D, Chen Z. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01510-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
11 Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022;10:813581. [DOI: 10.3389/fcell.2022.813581] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zhi Y, Zhang S, Zi M, Wang Y, Liu Y, Zhang M, Shi L, Yan Q, Zeng Z, Xiong W, Zhi K, Gong Z. Potential applications of N6 -methyladenosine modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdiscip Rev RNA 2022;:e1719. [PMID: 35114735 DOI: 10.1002/wrna.1719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Xu Y, Lv D, Yan C, Su H, Zhang X, Shi Y, Ying K. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m6A modification. Cancer Cell Int 2022;22:11. [PMID: 34996469 DOI: 10.1186/s12935-021-02433-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
14 Yang X, Wang J, Ma X, Du J, Mei C, Zan L. Transcriptome-wide N 6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Front Cell Dev Biol 2021;9:785380. [PMID: 34938736 DOI: 10.3389/fcell.2021.785380] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Huo XX, Wang SJ, Song H, Li MD, Yu H, Wang M, Gong HX, Qiu XT, Zhu YF, Zhang JY. Roles of Major RNA Adenosine Modifications in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2021;12:779779. [PMID: 34899345 DOI: 10.3389/fphar.2021.779779] [Reference Citation Analysis]
16 Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids 2021;26:1270-9. [PMID: 34853726 DOI: 10.1016/j.omtn.2021.10.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
17 Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y, Liang Z. RNA m6A Demethylase ALKBH5 Protects Against Pancreatic Ductal Adenocarcinoma via Targeting Regulators of Iron Metabolism. Front Cell Dev Biol 2021;9:724282. [PMID: 34733841 DOI: 10.3389/fcell.2021.724282] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
18 Han B, Wei S, Li F, Zhang J, Li Z, Gao X. Decoding m6A mRNA methylation by reader proteins in cancer. Cancer Lett 2021;518:256-65. [PMID: 34339799 DOI: 10.1016/j.canlet.2021.07.047] [Reference Citation Analysis]
19 Xu X, Huang J, Ocansey DKW, Xia Y, Zhao Z, Xu Z, Yan Y, Zhang X, Mao F. The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. J Inflamm Res 2021;14:3289-306. [PMID: 34290515 DOI: 10.2147/JIR.S320449] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
20 Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci 2021;17:2718-36. [PMID: 34345203 DOI: 10.7150/ijbs.60641] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Jing FY, Zhou LM, Ning YJ, Wang XJ, Zhu YM. The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Front Cell Dev Biol 2021;9:683254. [PMID: 34136491 DOI: 10.3389/fcell.2021.683254] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
22 Han F, Li W, Chen T, Yao Y, Li J, Wang D, Wang Z. Ferroptosis-related genes for predicting prognosis of patients with laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021;278:2919-25. [PMID: 33818649 DOI: 10.1007/s00405-021-06789-3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]