BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020;10:7053-69. [PMID: 32641978 DOI: 10.7150/thno.41388] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 22.5] [Reference Citation Analysis]
Number Citing Articles
1 Moreira-barbosa C, Matos A, Fernandes R, Mendes-ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. Bioactive Lipids 2023. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Reference Citation Analysis]
2 Papadaki S, Magklara A. Regulation of Metabolic Plasticity in Cancer Stem Cells and Implications in Cancer Therapy. Cancers 2022;14:5912. [DOI: 10.3390/cancers14235912] [Reference Citation Analysis]
3 He W, Li Q, Li X. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188837] [Reference Citation Analysis]
4 Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1027472] [Reference Citation Analysis]
5 Xiao X, Chen H, Yang L, Xie G, Shimuzu R, Murai A. Concise review: Cancer cell reprogramming and therapeutic implications. Transl Oncol 2022;24:101503. [PMID: 35933935 DOI: 10.1016/j.tranon.2022.101503] [Reference Citation Analysis]
6 Bezerra AF, Alves JPM, Fernandes CCL, Cavalcanti CM, Silva MRL, Conde AJH, Tetaping GM, Ferreira ACA, Melo LM, Rodrigues APR, Rondina D. Dyslipidemia induced by lipid diet in late gestation donor impact on growth kinetics and in vitro potential differentiation of umbilical cord Wharton's Jelly mesenchymal stem cells in goats. Vet Res Commun 2022. [PMID: 36125693 DOI: 10.1007/s11259-022-09995-4] [Reference Citation Analysis]
7 Yang Y, Meng W, Wang Z. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front Oncol 2022;12:960539. [DOI: 10.3389/fonc.2022.960539] [Reference Citation Analysis]
8 Huang J, Li Y, Zheng M, He H, Xu D, Tian D. RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1. Hum Cell 2022. [PMID: 36068398 DOI: 10.1007/s13577-022-00782-6] [Reference Citation Analysis]
9 Zhang Y, Kong X, Xin S, Bi L, Sun X, Jia S. Discovery of Lipid Metabolism-Related Genes for Predicting Tumor Immune Microenvironment Status and Prognosis in Prostate Cancer. Journal of Oncology 2022;2022:1-14. [DOI: 10.1155/2022/8227806] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Bellenghi M, Talarico G, Botti L, Puglisi R, Tabolacci C, Portararo P, Piva A, Pontecorvi G, Carè A, Colombo MP, Mattia G, Sangaletti S. SCD5-dependent inhibition of SPARC secretion hampers metastatic spreading and favors host immunity in a TNBC murine model. Oncogene. [DOI: 10.1038/s41388-022-02401-y] [Reference Citation Analysis]
11 Wang L, Ruan Y, Wu X, Zhou X, Wang F. lncRNA ZFAS1 Promotes HMGCR mRNA Stabilization via Binding U2AF2 to Modulate Pancreatic Carcinoma Lipometabolism. Journal of Immunology Research 2022;2022:1-12. [DOI: 10.1155/2022/4163198] [Reference Citation Analysis]
12 Wang J, Zhou Y, Zhang D, Zhao W, Lu Y, Liu C, Lin W, Zhang Y, Chen K, Wang H, Zhao L. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. EMBO J 2022;:e110218. [PMID: 35775648 DOI: 10.15252/embj.2021110218] [Reference Citation Analysis]
13 Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism. Cancers (Basel) 2022;14:2896. [PMID: 35740562 DOI: 10.3390/cancers14122896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rajput PK, Sharma JR, Yadav UCS. Cellular and molecular insights into the roles of visfatin in breast cancer cells plasticity programs. Life Sci 2022;304:120706. [PMID: 35691376 DOI: 10.1016/j.lfs.2022.120706] [Reference Citation Analysis]
15 He T, Tao B, Yi C, Zhang C, Zhang P, Shao W, Li Y, Chen Z, Lu L, Jia H, Zhu W, Lin J, Chen J. 27-Hydroxycholesterol promotes metastasis by SULT2A1-dependent alteration in hepatocellular carcinoma. Cancer Sci 2022. [PMID: 35599597 DOI: 10.1111/cas.15435] [Reference Citation Analysis]
16 Luo SD, Tsai HT, Chiu TJ, Li SH, Hsu YL, Su LJ, Tsai MH, Lee CY, Hsiao CC, Chen CH. Leptin Silencing Attenuates Lipid Accumulation through Sterol Regulatory Element-Binding Protein 1 Inhibition in Nasopharyngeal Carcinoma. Int J Mol Sci 2022;23:5700. [PMID: 35628510 DOI: 10.3390/ijms23105700] [Reference Citation Analysis]
17 Sun X, Zhang Y, Chen Y, Xin S, Jin L, Liu X, Zhou Z, Zhang J, Mei W, Zhang B, Yao X, Yang G, Ye L, Cai D. In Silico Establishment and Validation of Novel Lipid Metabolism-Related Gene Signature in Bladder Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/3170950] [Reference Citation Analysis]
18 Zhang L, Zhao S, Liu Y, Lv F, Geng X. Identification and validation of transcription factor-driven enhancers of genes related to lipid metabolism in metastatic oral squamous cell carcinomas. BMC Oral Health 2022;22. [DOI: 10.1186/s12903-022-02157-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022;13:831636. [PMID: 35392088 DOI: 10.3389/fimmu.2022.831636] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Tőkés AM, Vári-kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022;12:850401. [DOI: 10.3389/fonc.2022.850401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhang P, He Q, Wang Y, Zhou G, Chen Y, Tang L, Zhang Y, Hong X, Mao Y, He Q, Yang X, Liu N, Ma J. Protein C receptor maintains cancer stem cell properties via activating lipid synthesis in nasopharyngeal carcinoma. Signal Transduct Target Ther 2022;7:46. [PMID: 35169126 DOI: 10.1038/s41392-021-00866-z] [Reference Citation Analysis]
22 Wittka A, Ketteler J, Borgards L, Maier P, Herskind C, Jendrossek V, Klein D. Stromal Fibroblasts Counteract the Caveolin-1-Dependent Radiation Response of LNCaP Prostate Carcinoma Cells. Front Oncol 2022;12:802482. [PMID: 35155239 DOI: 10.3389/fonc.2022.802482] [Reference Citation Analysis]
23 Yu X, Mi S, Ye J, Lou G. Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. J Cancer 2021;12:7498-506. [PMID: 35003369 DOI: 10.7150/jca.64833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 David JC, Afonso MB, Rodrigues CMP. Metabolic Alterations of Hepatocellular Cancer Stem Cells. Interdisciplinary Cancer Research 2022. [DOI: 10.1007/16833_2022_43] [Reference Citation Analysis]
25 Bao L, Xu T, Lu X, Huang P, Pan Z, Ge M. Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Front Oncol 2021;11:773028. [PMID: 34926283 DOI: 10.3389/fonc.2021.773028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Gao X, Zhao N, Dong L, Zheng X, Zhang Y, Ding C, Zhao S, Ma Z, Wang Y. A Novel Lipid Prognostic Signature of ADCY2, LIPE, and OLR1 in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021;11:735993. [PMID: 34900686 DOI: 10.3389/fonc.2021.735993] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Rabionet M, Polonio-Alcalá E, Relat J, Yeste M, Sims-Mourtada J, Kloxin AM, Planas M, Feliu L, Ciurana J, Puig T. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Mater Today Bio 2021;12:100155. [PMID: 34841239 DOI: 10.1016/j.mtbio.2021.100155] [Reference Citation Analysis]
28 Yang H, Deng Q, Ni T, Liu Y, Lu L, Dai H, Wang H, Yang W. Targeted Inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int J Biol Sci 2021;17:4207-22. [PMID: 34803493 DOI: 10.7150/ijbs.64714] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
29 van Noorden CJF, Breznik B, Novak M, van Dijck AJ, Tanan S, Vittori M, Bogataj U, Bakker N, Khoury JD, Molenaar RJ, Hira VVV. Cell Biology Meets Cell Metabolism: Energy Production Is Similar in Stem Cells and in Cancer Stem Cells in Brain and Bone Marrow. J Histochem Cytochem 2021;:221554211054585. [PMID: 34714696 DOI: 10.1369/00221554211054585] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
30 Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021;12:730751. [PMID: 34603046 DOI: 10.3389/fphar.2021.730751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
31 Verigos J, Kordias D, Papadaki S, Magklara A. Transcriptional Profiling of Tumorspheres Reveals TRPM4 as a Novel Stemness Regulator in Breast Cancer. Biomedicines 2021;9:1368. [PMID: 34680485 DOI: 10.3390/biomedicines9101368] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
32 Škara L, Huđek Turković A, Pezelj I, Vrtarić A, Sinčić N, Krušlin B, Ulamec M. Prostate Cancer-Focus on Cholesterol. Cancers (Basel) 2021;13:4696. [PMID: 34572923 DOI: 10.3390/cancers13184696] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Alapati K, Handanahal SS. Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells. World J Microbiol Biotechnol 2021;37:141. [PMID: 34287712 DOI: 10.1007/s11274-021-03076-5] [Reference Citation Analysis]
34 Gaggianesi M, Di Franco S, Pantina VD, Porcelli G, D'Accardo C, Verona F, Veschi V, Colarossi L, Faldetta N, Pistone G, Bongiorno MR, Todaro M, Stassi G. Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Front Oncol 2021;11:702642. [PMID: 34354950 DOI: 10.3389/fonc.2021.702642] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
35 Liput KP, Lepczyński A, Ogłuszka M, Nawrocka A, Poławska E, Grzesiak A, Ślaska B, Pareek CS, Czarnik U, Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int J Mol Sci 2021;22:6965. [PMID: 34203461 DOI: 10.3390/ijms22136965] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 20.0] [Reference Citation Analysis]
36 Addeo M, Di Paola G, Verma HK, Laurino S, Russi S, Zoppoli P, Falco G, Mazzone P. Gastric Cancer Stem Cells: A Glimpse on Metabolic Reprogramming. Front Oncol 2021;11:698394. [PMID: 34249759 DOI: 10.3389/fonc.2021.698394] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
37 Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021;12:656364. [PMID: 34122412 DOI: 10.3389/fimmu.2021.656364] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 47.0] [Reference Citation Analysis]
38 Madsen S, Ramosaj M, Knobloch M. Lipid metabolism in focus: how the build-up and breakdown of lipids affects stem cells. Development 2021;148:dev191924. [PMID: 34042969 DOI: 10.1242/dev.191924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
39 Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, Li G, Han Z, Zhan L, Zhang S, Zhu K, Luo Y, Chen L, Zhang N, Guo H. LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab 2021;51:101230. [PMID: 33823318 DOI: 10.1016/j.molmet.2021.101230] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
40 Wei D, Zhu X, Li S, Liu G, Wang Y, Wang W, Zhang Q, Jiang S. Tideglusib suppresses stem-cell-like features and progression of osteosarcoma by inhibiting GSK-3β/NOTCH1 signaling. Biochem Biophys Res Commun 2021;554:206-13. [PMID: 33813076 DOI: 10.1016/j.bbrc.2020.12.055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 van Noorden CJF, Hira VVV, van Dijck AJ, Novak M, Breznik B, Molenaar RJ. Energy Metabolism in IDH1 Wild-Type and IDH1-Mutated Glioblastoma Stem Cells: A Novel Target for Therapy? Cells 2021;10:705. [PMID: 33810170 DOI: 10.3390/cells10030705] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
42 Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158920. [PMID: 33684566 DOI: 10.1016/j.bbalip.2021.158920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Lee HC, Ou CH, Huang YC, Hou PC, Creighton CJ, Lin YS, Hu CY, Lin SC. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 2021;40:2407-21. [PMID: 33664454 DOI: 10.1038/s41388-021-01718-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
44 Shuvalov O, Daks A, Fedorova O, Petukhov A, Barlev N. Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers (Basel) 2021;13:762. [PMID: 33673109 DOI: 10.3390/cancers13040762] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
45 Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. Biology (Basel) 2020;9:E474. [PMID: 33339398 DOI: 10.3390/biology9120474] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
46 Castagnoli L, Tagliabue E, Pupa SM. Inhibition of the Wnt Signalling Pathway: An Avenue to Control Breast Cancer Aggressiveness. Int J Mol Sci 2020;21:E9069. [PMID: 33260642 DOI: 10.3390/ijms21239069] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
47 Palviainen M, Laukkanen K, Tavukcuoglu Z, Velagapudi V, Kärkkäinen O, Hanhineva K, Auriola S, Ranki A, Siljander P. Cancer Alters the Metabolic Fingerprint of Extracellular Vesicles. Cancers (Basel) 2020;12:E3292. [PMID: 33172086 DOI: 10.3390/cancers12113292] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
48 Kopecka J, Godel M, Riganti C. Cholesterol metabolism: At the cross road between cancer cells and immune environment. Int J Biochem Cell Biol 2020;129:105876. [PMID: 33166677 DOI: 10.1016/j.biocel.2020.105876] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]