BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang T, Zhai M, Xu S, Ponnusamy M, Huang Y, Liu CY, Wang M, Shan C, Shan PP, Gao XQ, Wang K, Chen XZ, Liu J, Xie JY, Zhang DY, Zhou LY, Wang K. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics 2020;10:553-66. [PMID: 31903137 DOI: 10.7150/thno.37181] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang MY, Zhu L, Zheng X, Xie TH, Wang W, Zou J, Li Y, Li HY, Cai J, Gu S, Yao Y, Wei TT. TGR5 Activation Ameliorates Mitochondrial Homeostasis via Regulating the PKCδ/Drp1-HK2 Signaling in Diabetic Retinopathy. Front Cell Dev Biol 2021;9:759421. [PMID: 35096809 DOI: 10.3389/fcell.2021.759421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yang D, Liu H, Liu F, Guo Z, An P, Wang M, Yang Z, Fan D, Tang Q. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Front Cardiovasc Med 2022;8:822969. [DOI: 10.3389/fcvm.2021.822969] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Yang P, Yang Y, He X, Sun P, Zhang Y, Song X, Tian Y, Zong T, Ma J, Chen X, Lv Q, Yu T, Jiang Z. miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis. Front Cardiovasc Med 2021;8:764831. [PMID: 34977182 DOI: 10.3389/fcvm.2021.764831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021;287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021;11:1123. [PMID: 34832998 DOI: 10.3390/life11111123] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
6 Zheng H, Liang X, Han Q, Shao Z, Zhang Y, Shi L, Hong Y, Li W, Mai C, Mo Q, Fu Q, Ma X, Lin F, Li M, Hu B, Li X, Zhang Y. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J Nanobiotechnology 2021;19:332. [PMID: 34674708 DOI: 10.1186/s12951-021-01077-y] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
7 Zhou Z, Lai Y, Cao S, Zhuo Q, Tang H. Long non‑coding RNA HHIP‑AS1 inhibits lung cancer epithelial‑mesenchymal transition and stemness by regulating PCDHGA9. Mol Med Rep 2021;24:845. [PMID: 34643245 DOI: 10.3892/mmr.2021.12485] [Reference Citation Analysis]
8 Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. Mol Ther Nucleic Acids 2021;25:416-43. [PMID: 34484866 DOI: 10.1016/j.omtn.2021.06.006] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
9 Sharma K, Chandra A, Hasija Y, Saini N. MicroRNA-128 inhibits mitochondrial biogenesis and function via targeting PGC1α and NDUFS4. Mitochondrion 2021;60:160-9. [PMID: 34384932 DOI: 10.1016/j.mito.2021.08.008] [Reference Citation Analysis]
10 Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021;12:663322. [PMID: 34122082 DOI: 10.3389/fphar.2021.663322] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021;10:560. [PMID: 34066504 DOI: 10.3390/pathogens10050560] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Chen Y, Li S, Zhang Y, Wang M, Li X, Liu S, Xu D, Bao Y, Jia P, Wu N, Lu Y, Jia D. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol 2021;41:101910. [PMID: 33667993 DOI: 10.1016/j.redox.2021.101910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Xiao T, Huang J, Liu Y, Zhao Y, Wei M. Matrine Protects Cardiomyocytes Against Hyperglycemic Stress by Promoting Mitofusin 2-Induced Mitochondrial Fusion. Front Physiol 2020;11:597429. [PMID: 33613300 DOI: 10.3389/fphys.2020.597429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yan H, Wang H, Zhu X, Huang J, Li Y, Zhou K, Hua Y, Yan F, Wang DZ, Luo Y. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Mol Ther Nucleic Acids 2021;23:406-17. [PMID: 33473326 DOI: 10.1016/j.omtn.2020.11.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Ning W, Li S, Yang W, Yang B, Xin C, Ping X, Huang C, Gu Y, Guo L. Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway. Cell Signal 2021;77:109812. [PMID: 33164880 DOI: 10.1016/j.cellsig.2020.109812] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Gao XQ, Zhang YH, Liu F, Ponnusamy M, Zhao XM, Zhou LY, Zhai M, Liu CY, Li XM, Wang M, Shan C, Shan PP, Wang Y, Dong YH, Qian LL, Yu T, Ju J, Wang T, Wang K, Chen XZ, Wang YH, Zhang J, Li PF, Wang K. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020;22:1319-31. [PMID: 33020597 DOI: 10.1038/s41556-020-0576-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
17 Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020;62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
18 Ma D, Zheng B, Liu HL, Zhao YB, Liu X, Zhang XH, Li Q, Shi WB, Suzuki T, Wen JK. Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission. PLoS Biol 2020;18:e3000808. [PMID: 32817651 DOI: 10.1371/journal.pbio.3000808] [Cited by in Crossref: 4] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang W, Wu C, Ren L, Bao Y, Han Y, Li C, Li Y. MiR-30e-5p is sponged by Kcnq1ot1 and represses Angiotensin II-induced hypertrophic phenotypes in cardiomyocytes by targeting ADAM9. Exp Cell Res 2020;394:112140. [PMID: 32535037 DOI: 10.1016/j.yexcr.2020.112140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]