BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou L, Wang H, Li Y. Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics 2018;8:1059-74. [PMID: 29463999 DOI: 10.7150/thno.22679] [Cited by in Crossref: 135] [Cited by in F6Publishing: 144] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1161472] [Reference Citation Analysis]
2 Zhang W, Babu A, Yan Y, Park SS, Jo N, Chung I, Ahn S, Park I, Ha C. ROS/GSH dual-responsive selenium-containing mesoporous silica nanoparticles for drug delivery. J Porous Mater 2023. [DOI: 10.1007/s10934-023-01430-6] [Reference Citation Analysis]
3 Petrikaite V, D'avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resistance Updates 2023. [DOI: 10.1016/j.drup.2023.100956] [Reference Citation Analysis]
4 Mukerabigwi JF, Tang R, Cao Y, Mohammed F, Zhou Q, Zhou M, Ge Z. Mitochondria-Targeting Polyprodrugs to Overcome the Drug Resistance of Cancer Cells by Self-Amplified Oxidation-Triggered Drug Release. Bioconjug Chem 2023;34:377-91. [PMID: 36716444 DOI: 10.1021/acs.bioconjchem.2c00559] [Reference Citation Analysis]
5 Zhu S, Li K, Qin S, Lin J, Qiu L. Cerenkov radiation induced Chemo-Photodynamic Therapy using ROS-responsive agent. Journal of Photochemistry and Photobiology A: Chemistry 2023. [DOI: 10.1016/j.jphotochem.2023.114641] [Reference Citation Analysis]
6 Li N, Deng B, Li W, Song G, Wang Y, Feng J, Zhao D, Fan X, Xu M. A universal multivalent hyperbranched delivery platform for circumventing multidrug resistance via double camouflage and rapid bonding with cell. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104265] [Reference Citation Analysis]
7 Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023;226:535-53. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Reference Citation Analysis]
8 Liu J, Mu W, Gao T, Fang Y, Zhang N, Liu Y. CD13-Mediated Pegylated Carboxymethyl Chitosan-Capped Mesoporous Silica Nanoparticles for Enhancing the Therapeutic Efficacy of Hepatocellular Carcinoma. Pharmaceutics 2023;15. [PMID: 36839748 DOI: 10.3390/pharmaceutics15020426] [Reference Citation Analysis]
9 Cheng C, Jiang W, Luo Y, Wan L, Guo X, Xie Z, Tang R, Huang T, Wang J, Du C, Wang Z, Ran H, Li P, Zhou Z, Ren J. NIR Activated Multimodal Therapeutics Based on Metal-Phenolic Networks-Functionalized Nanoplatform for Combating against Multidrug Resistance and Metastasis. Small 2023;:e2206174. [PMID: 36651135 DOI: 10.1002/smll.202206174] [Reference Citation Analysis]
10 Chen H, Zhang S, Fang Q, He H, Ren J, Sun D, Lai J, Ma A, Chen Z, Liu L, Liang R, Cai L. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS Nano 2023;17:421-36. [PMID: 36573683 DOI: 10.1021/acsnano.2c08861] [Reference Citation Analysis]
11 Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Reference Citation Analysis]
12 Singh N, Shi S, Goel S. Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Adv Drug Deliv Rev 2023;192:114638. [PMID: 36462644 DOI: 10.1016/j.addr.2022.114638] [Reference Citation Analysis]
13 Jain A, Alex TS, Lang DK, Gupta S. Stimuli-responsive protein fibers for advanced applications. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00013-1] [Reference Citation Analysis]
14 Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022;12. [PMID: 36670865 DOI: 10.3390/antiox12010003] [Reference Citation Analysis]
15 Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022;7:386. [PMID: 36460660 DOI: 10.1038/s41392-022-01250-1] [Reference Citation Analysis]
16 Lo YL, Fang YH, Chiu YJ, Chang CY, Lee CH, Liao ZX, Wang LF. Light- and Redox-Responsive Block Copolymers of mPEG-SS-ONBMA as a Smart Drug Delivery Carrier for Cancer Therapy. Pharmaceutics 2022;14. [PMID: 36559088 DOI: 10.3390/pharmaceutics14122594] [Reference Citation Analysis]
17 Liu L, Cheng M, Guo H, Guan Q, You J, Dou H. Multidimensional Quantitative Measurement of Cancer Chemoresistance through Differential ZIF-8 Nanoparticle Cellular Retention. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c17692] [Reference Citation Analysis]
18 Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale 2022. [PMID: 36056710 DOI: 10.1039/d2nr04418h] [Reference Citation Analysis]
19 Fu D, You J, Guo R, Zhang J, Li Q, Wen J, Wang H, Yan H. Preparation of Nanostructured Graphene Oxide and Its Application in Drug Loading and Sustained Release. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200670] [Reference Citation Analysis]
20 Moeini A, Hassanzadeh Chinijani T, Malek Khachatourian A, Vinicius Lia Fook M, Baino F, Montazerian M. A critical review of bioactive glasses and glass–ceramics in cancer therapy. Int J of Appl Glass Sci. [DOI: 10.1111/ijag.16601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology 2022;20:337. [PMID: 35858896 DOI: 10.1186/s12951-022-01548-w] [Reference Citation Analysis]
22 Li S, Li F, Wan D, Chen Z, Pan J, Liang X. A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.07.001] [Reference Citation Analysis]
23 Li Z, Pan Y, Du S, Li Y, Chen C, Song H, Wu Y, Luan X, Xu Q, Guan X, Song Y, Han X. Tumor-microenvironment activated duplex genome-editing nanoprodrug for sensitized near-infrared titania phototherapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.06.016] [Reference Citation Analysis]
24 Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OpenNano 2022;7:100055. [DOI: 10.1016/j.onano.2022.100055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen QB, Shen MH, Ren XH, Zhu S, Shang JT, Liu W, Zhang ZW, Dong ZJ, Gu HZ, Zhang XZ, Yuan Q, Zou T. Tumor-triggered targeting ammonium bicarbonate liposomes for tumor multimodal therapy. J Mater Chem B 2022. [PMID: 35666635 DOI: 10.1039/d2tb00409g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Shao N, Yuan L, Ma P, Zhou M, Xiao X, Cong Z, Wu Y, Xiao G, Fei J, Liu R. Heterochiral β-Peptide Polymers Combating Multidrug-Resistant Cancers Effectively without Inducing Drug Resistance. J Am Chem Soc 2022. [PMID: 35420800 DOI: 10.1021/jacs.2c00452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wang X, Ye L, He W, Teng C, Sun S, Lu H, Li S, Lv L, Cao X, Yin H, Lv W, Xin H. In situ targeting nanoparticles-hydrogel hybrid system for combined chemo-immunotherapy of glioma. J Control Release 2022;345:786-97. [PMID: 35367277 DOI: 10.1016/j.jconrel.2022.03.050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
28 Zhou X, Jin N, Chen B. Tetrandrine overcomes drug resistance mediated by bone marrow microenvironment by regulating the expression of P-glycoprotein in acute leukemia. Hematology 2022;27:274-9. [PMID: 35192780 DOI: 10.1080/16078454.2022.2034256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Omar H, Fardous R, Alhindi YM, Aodah AH, Alyami M, Alsuabeyl MS, Alghamdi WM, Alhasan AH, Almalik A. α1-Acid Glycoprotein-Decorated Hyaluronic Acid Nanoparticles for Suppressing Metastasis and Overcoming Drug Resistance Breast Cancer. Biomedicines 2022;10:414. [DOI: 10.3390/biomedicines10020414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Li H, Zhang Y, Liang L, Song J, Wei Z, Yang S, Ma Y, Chen WR, Lu C, Wen L. Doxorubicin-Loaded Metal-Organic Framework Nanoparticles as Acid-Activatable Hydroxyl Radical Nanogenerators for Enhanced Chemo/Chemodynamic Synergistic Therapy. Materials 2022;15:1096. [DOI: 10.3390/ma15031096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
32 Zhang J, Lin W, Yang L, Zhang A, Zhang Y, Liu J, Liu J. Injectable and pH-responsive self-assembled peptide hydrogel for promoted tumor cell uptake and enhanced cancer chemotherapy. Biomater Sci 2022. [PMID: 35006223 DOI: 10.1039/d1bm01788h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
33 Wu W, Pu Y, Shi J. Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. J Nanobiotechnology 2022;20:4. [PMID: 34983555 DOI: 10.1186/s12951-021-01181-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
34 Chen S, Morrison G, Liu W, Kaur A, Chen R. A pH-responsive, endosomolytic liposome functionalized with membrane-anchoring, comb-like pseudopeptides for enhanced intracellular delivery and cancer treatment. Biomater Sci 2022. [DOI: 10.1039/d2bm01087a] [Reference Citation Analysis]
35 Yang H, Wang N, Yang R, Zhang L, Jiang X. Folic Acid-Decorated β-Cyclodextrin-Based Poly(ε-caprolactone)-dextran Star Polymer with Disulfide Bond-Linker as Theranostic Nanoparticle for Tumor-Targeted MRI and Chemotherapy. Pharmaceutics 2021;14:52. [PMID: 35056948 DOI: 10.3390/pharmaceutics14010052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Yin H, Lu H, Xiong Y, Ye L, Teng C, Cao X, Li S, Sun S, Liu W, Lv W, Xin H. Tumor-Associated Neutrophil Extracellular Traps Regulating Nanocarrier-Enhanced Inhibition of Malignant Tumor Growth and Distant Metastasis. ACS Appl Mater Interfaces 2021;13:59683-94. [PMID: 34902970 DOI: 10.1021/acsami.1c18660] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021;14:18. [PMID: 35056915 DOI: 10.3390/pharmaceutics14010018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
38 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021;13:6175. [PMID: 34944794 DOI: 10.3390/cancers13246175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
40 Liu C, Chen H, Zhou H, Yu S, Wang N, Yao W, Lu AH, Qiao W. Magnetic Resonance Imaging-Guided Multi-Stimulus-Responsive Drug Delivery Strategy for Personalized and Precise Cancer Treatment. ACS Appl Mater Interfaces 2021;13:50716-32. [PMID: 34668377 DOI: 10.1021/acsami.1c13853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
41 Guan Y, Zeng S, Qin Y, Mu Y, Liu H. Vitamin E-tocopheryl polyethylene glycol succinate decorated drug delivery system with synergistic antitumor effects to reverse drug resistance and immunosuppression. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127387. [DOI: 10.1016/j.colsurfa.2021.127387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021;338:224-43. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
43 Miroshkina AM, Krechetov SP, Solovieva NL, Krasnyuk II. DEVELOPMENT OF POLYMERIC MICROPARTICLES WITH RADACHLORINE AND ESTIMATION OF THE PROSPECTS OF THEIR USE IN PHOTODYNAMIC THERAPY. Rossijskij bioterapevtičeskij žurnal 2021;20:47-56. [DOI: 10.17650/1726-9784-2021-20-3-47-56] [Reference Citation Analysis]
44 Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021;21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
45 Li Y, Yang L, Xu X, Li M, Zhang Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Multifunctional Size-Expandable Nanomedicines Enhance Tumor Accumulation and Penetration for Synergistic Chemo-Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:46361-74. [PMID: 34579526 DOI: 10.1021/acsami.1c14170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
46 Krechetov SP, Miroshkina AM, Yakovtseva MN, Mochalova EN, Babenyshev AV, Maslov IV, Loshkarev AA, Krasnyuk II. Radachlorin-Containing Microparticles for Photodynamic Therapy. Adv Pharm Bull 2021;11:458-68. [PMID: 34513620 DOI: 10.34172/apb.2021.053] [Reference Citation Analysis]
47 Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021;28:272-84. [PMID: 33501883 DOI: 10.1080/10717544.2021.1876182] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
48 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
49 Murugan B, Sagadevan S, Fatimah I, Oh W, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews 2021;10:933-53. [DOI: 10.1515/ntrev-2021-0067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
50 Zong Q, Wang K, Xiao X, Jiang M, Li J, Yuan Y, Wang J. Amplification of tumor oxidative stresses by Poly(disulfide acetal) for multidrug resistance reversal. Biomaterials 2021;276:121005. [PMID: 34252801 DOI: 10.1016/j.biomaterials.2021.121005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
51 Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021;50:9152-201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Cited by in Crossref: 70] [Cited by in F6Publishing: 90] [Article Influence: 35.0] [Reference Citation Analysis]
52 Taha MS, Padmakumar S, Singh A, Amiji MM. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2020;10:766-90. [PMID: 32170656 DOI: 10.1007/s13346-020-00744-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
53 Fu S, Yang R, Ren J, Liu J, Zhang L, Xu Z, Kang Y, Xue P. Catalytically Active CoFe2O4 Nanoflowers for Augmented Sonodynamic and Chemodynamic Combination Therapy with Elicitation of Robust Immune Response. ACS Nano 2021. [PMID: 34142808 DOI: 10.1021/acsnano.1c03128] [Cited by in Crossref: 35] [Cited by in F6Publishing: 42] [Article Influence: 17.5] [Reference Citation Analysis]
54 Xi L, Wang J, Wang Y, Ge Z. Dual-Targeting Polymeric Nanocarriers to Deliver ROS-Responsive Prodrugs and Combat Multidrug Resistance of Cancer Cells. Macromol Biosci 2021;:e2100091. [PMID: 34145971 DOI: 10.1002/mabi.202100091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
55 Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021;166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
56 AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep 2021;11:11589. [PMID: 34078930 DOI: 10.1038/s41598-021-90349-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
57 Lai X, Geng X, Li M, Tang M, Liu Q, Yang M, Shen L, Zhu Y, Wang S. Glutathione-responsive PLGA nanocomplex for dual delivery of doxorubicin and curcumin to overcome tumor multidrug resistance. Nanomedicine (Lond) 2021;16:1411-27. [PMID: 34047204 DOI: 10.2217/nnm-2021-0100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
58 Zheng RR, Zhao LP, Liu LS, Deng FA, Chen XY, Jiang XY, Wang C, Yu XY, Cheng H, Li SY. Self-delivery nanomedicine to overcome drug resistance for synergistic chemotherapy. Biomater Sci 2021;9:3445-52. [PMID: 33949456 DOI: 10.1039/d1bm00119a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
59 Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021;335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
60 Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Adv Sci (Weinh) 2021;8:2002927. [PMID: 34026433 DOI: 10.1002/advs.202002927] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
61 Qiao Y, Zhan C, Wang C, Shi X, Yang J, He X, Ji E, Yu Z, Yan C, Wu H. MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity. J Mater Chem B 2020;8:8527-35. [PMID: 32869819 DOI: 10.1039/d0tb01682a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
62 Sun H, Zhang Q, Li J, Peng S, Wang X, Cai R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021;37:101073. [DOI: 10.1016/j.nantod.2020.101073] [Cited by in Crossref: 70] [Cited by in F6Publishing: 80] [Article Influence: 35.0] [Reference Citation Analysis]
63 Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russ J Bioorg Chem 2021;47:71-98. [DOI: 10.1134/s1068162021010222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. J Exp Clin Cancer Res 2021;40:97. [PMID: 33722297 DOI: 10.1186/s13046-021-01893-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021;271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
66 Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Adv Healthc Mater 2021;10:e2000690. [PMID: 32691969 DOI: 10.1002/adhm.202000690] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
67 Jia W, Wang Y, Liu R, Yu X, Gao H. Shape Transformable Strategies for Drug Delivery. Adv Funct Mater 2021;31:2009765. [DOI: 10.1002/adfm.202009765] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
68 Li Y, Yang M, Zhao Y, Li L, Xu W. Preparation and in vitro evaluation of amphiphilic paclitaxel small molecule prodrugs and enhancement of oral absorption. Eur J Med Chem 2021;215:113276. [PMID: 33611186 DOI: 10.1016/j.ejmech.2021.113276] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
69 Li J, Zhang W, Gao Y, Tong H, Chen Z, Shi J, Santos HA, Xia B. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. J Mater Chem B 2020;8:546-57. [PMID: 31854435 DOI: 10.1039/c9tb02340b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
70 Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
71 Moradi Kashkooli F, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 2021;36:101057. [DOI: 10.1016/j.nantod.2020.101057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
72 Li Q, Fu D, Zhang J, Yan H, Wang H, Niu B, Guo R, Liu Y. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 2021;200:111586. [PMID: 33529927 DOI: 10.1016/j.colsurfb.2021.111586] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
73 Li S, Yang S, Liu C, He J, Li T, Fu C, Meng X, Shao H. Enhanced Photothermal-Photodynamic Therapy by Indocyanine Green and Curcumin-Loaded Layered MoS2 Hollow Spheres via Inhibition of P-Glycoprotein. Int J Nanomedicine 2021;16:433-42. [PMID: 33488079 DOI: 10.2147/IJN.S275938] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
74 Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2020;7:597634. [PMID: 33505987 DOI: 10.3389/fmolb.2020.597634] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
75 Xiao X, Wang K, Zong Q, Tu Y, Dong Y, Yuan Y. Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials 2021;270:120649. [PMID: 33588139 DOI: 10.1016/j.biomaterials.2020.120649] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
76 Winum J. Nanostructures and innovative delivery systems for overcoming cancer resistance. pH-Interfering Agents as Chemosensitizers in Cancer Therapy 2021. [DOI: 10.1016/b978-0-12-820701-7.00002-6] [Reference Citation Analysis]
77 Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, Zhong Y, Qiu J, McGinty S, Pontrelli G, Liao X, Wu W, Wang G. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 2021;11:164-80. [PMID: 33391468 DOI: 10.7150/thno.47841] [Cited by in Crossref: 77] [Cited by in F6Publishing: 84] [Article Influence: 38.5] [Reference Citation Analysis]
78 Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews 2021;426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
79 Das P, Das MK. Nanoparticle-based theranostics in cancer. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00011-6] [Reference Citation Analysis]
80 Qorri B, Decarlo A, Mellon M, Szewczuk MR. Drug delivery systems in cancer therapy. Drug Delivery Devices and Therapeutic Systems 2021. [DOI: 10.1016/b978-0-12-819838-4.00016-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Poudel K, Banstola A, Gautam M, Soe ZC, Pham LM, Jeong J, Choi H, Ku SK, Yong CS, Tran TH, Kim JO. Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer. Nanoscale 2021;13:1231-47. [DOI: 10.1039/d0nr07736d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
82 Anbazhagan R, Muthusamy G, Krishnamoorthi R, Kumaresan S, Rajendra Prasad N, Lai JY, Yang JM, Tsai HC. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance. Biotechnol Bioeng 2021;118:1213-23. [PMID: 33289076 DOI: 10.1002/bit.27645] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
83 Gharbavi M, Johari B, Rismani E, Mousazadeh N, Taromchi AH, Sharafi A. NANOG Decoy Oligodeoxynucleotide-Encapsulated Niosomes Nanocarriers: A Promising Approach to Suppress the Metastatic Properties of U87 Human Glioblastoma Multiforme Cells. ACS Chem Neurosci 2020;11:4499-515. [PMID: 33283497 DOI: 10.1021/acschemneuro.0c00699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
84 Shi X, Yang X, Liu M, Wang R, Qiu N, Liu Y, Yang H, Ji J, Zhai G. Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydr Polym 2021;254:117459. [PMID: 33357918 DOI: 10.1016/j.carbpol.2020.117459] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
85 Zhang L, Xu B. Autophagy inhibitior autophagy-related 7 small interfering RNA and doxorubicin dual-loaded nanostructured lipid carrier to combat multidrug resistance. J Mater Res 2020;35:3136-43. [DOI: 10.1557/jmr.2020.223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
86 Fu J, Li T, Yang Y, Jiang L, Wang W, Fu L, Zhu Y, Hao Y. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 2021;268:120537. [PMID: 33260096 DOI: 10.1016/j.biomaterials.2020.120537] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 19.0] [Reference Citation Analysis]
87 Siamof CM, Goel S, Cai W. Moving Beyond the Pillars of Cancer Treatment: Perspectives From Nanotechnology. Front Chem 2020;8:598100. [PMID: 33240859 DOI: 10.3389/fchem.2020.598100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
88 Fu Q, Li Z, Fu F, Chen X, Song J, Yang H. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. Nano Today 2021;36:101014. [PMID: 33250931 DOI: 10.1016/j.nantod.2020.101014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
89 Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resist 2020;3:930-46. [PMID: 35582218 DOI: 10.20517/cdr.2020.68] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
90 Jiao X, Zhang W, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Rational design of oxygen deficient TiO2-x nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer. Nanoscale 2020;12:1707-18. [PMID: 31894823 DOI: 10.1039/c9nr09423g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
91 Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor Microenvironment Stimuli‐Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon‐Dot–Cu 2+ Nanoassemblies. Angew Chem Int Ed 2020;59:21041-8. [DOI: 10.1002/anie.202007786] [Cited by in Crossref: 120] [Cited by in F6Publishing: 122] [Article Influence: 40.0] [Reference Citation Analysis]
92 Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor Microenvironment Stimuli‐Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon‐Dot–Cu 2+ Nanoassemblies. Angew Chem 2020;132:21227-34. [DOI: 10.1002/ange.202007786] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
93 Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020;21:E6380. [PMID: 32887466 DOI: 10.3390/ijms21176380] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
94 Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine 2020;15:2171-200. [DOI: 10.2217/nnm-2020-0146] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
95 Norouzi S, Yazdian Robati R, Ghandadi M, Abnous K, Behravan J, Mosaffa F. Comparative proteomics study of proteins involved in induction of higher rates of cell death in mitoxantrone-resistant breast cancer cells MCF-7/MX exposed to TNF-α. Iran J Basic Med Sci 2020;23:663-72. [PMID: 32742605 DOI: 10.22038/ijbms.2020.40029.9486] [Reference Citation Analysis]
96 Oshiro-Júnior JA, Rodero C, Hanck-Silva G, Sato MR, Alves RC, Eloy JO, Chorilli M. Stimuli-responsive Drug Delivery Nanocarriers in the Treatment of Breast Cancer. Curr Med Chem 2020;27:2494-513. [PMID: 30306849 DOI: 10.2174/0929867325666181009120610] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
97 Zhu Y, Jia H, Duan Q, Liu X, Yang J, Liu Y, Wu F. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS Appl Mater Interfaces 2020;12:36882-94. [DOI: 10.1021/acsami.0c09110] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
98 Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Adv Mater 2020;32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 18.3] [Reference Citation Analysis]
99 Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. Journal of Controlled Release 2020;323:483-501. [DOI: 10.1016/j.jconrel.2020.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
100 Ye J, Zhang X, Xie W, Gong M, Liao M, Meng Q, Xue J, Shi R, Zhang L. An Enzyme-Responsive Prodrug with Inflammation-Triggered Therapeutic Drug Release Characteristics. Macromol Biosci 2020;20:e2000116. [PMID: 32603032 DOI: 10.1002/mabi.202000116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
101 Li S, Song X, Zhu W, Chen Y, Zhu R, Wang L, Chen X, Song J, Yang H. Light-Switchable Yolk-Mesoporous Shell UCNPs@MgSiO3 for Nitric Oxide-Evoked Multidrug Resistance Reversal in Cancer Therapy. ACS Appl Mater Interfaces 2020;12:30066-76. [PMID: 32393026 DOI: 10.1021/acsami.0c06102] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
102 Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020;21:2966-82. [DOI: 10.1021/acs.biomac.0c00438] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
103 Jiang Y, Wang Z, Duan W, Liu L, Si M, Chen X, Fang CJ. The critical size of gold nanoparticles for overcoming P-gp mediated multidrug resistance. Nanoscale 2020;12:16451-61. [PMID: 32790812 DOI: 10.1039/d0nr03226c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
104 Zhao Y, Cai F, Shen X, Su H. A high stable pH-temperature dual-sensitive liposome for tuning anticancer drug release. Synth Syst Biotechnol 2020;5:103-10. [PMID: 32596520 DOI: 10.1016/j.synbio.2020.05.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
105 Morsy MA, El-Sheikh AAK, Ibrahim ARN, Venugopala KN, Kandeel M. In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells. PeerJ 2020;8:e9163. [PMID: 32566390 DOI: 10.7717/peerj.9163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
106 Bilal M, Xu C, Cao L, Zhao P, Cao C, Li F, Huang Q. Indoxacarb‐loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Manag Sci 2020;76:3749-58. [DOI: 10.1002/ps.5924] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
107 Liu L, Bao Y, Wang J, Xiao C, Chen L. Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes and Pigments 2020;177:107922. [DOI: 10.1016/j.dyepig.2019.107922] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
108 Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). European Polymer Journal 2020;133:109736. [DOI: 10.1016/j.eurpolymj.2020.109736] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020;10:6987-7001. [PMID: 32550917 DOI: 10.7150/thno.44569] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
110 Zhang C, Wang X, Cheng R, Zhong Z. A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules 2020;21:2049-59. [DOI: 10.1021/acs.biomac.9b01790] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
111 Mello FVC, de Moraes GN, Maia RC, Kyeremateng J, Iram SH, Santos-Oliveira R. The Effect of Nanosystems on ATP-Binding Cassette Transporters: Understanding the Influence of Nanosystems on Multidrug Resistance Protein-1 and P-glycoprotein. Int J Mol Sci 2020;21:E2630. [PMID: 32290047 DOI: 10.3390/ijms21072630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
112 Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020;244:119979. [PMID: 32200104 DOI: 10.1016/j.biomaterials.2020.119979] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
113 Iyer R, Nguyen T, Padanilam D, Xu C, Saha D, Nguyen KT, Hong Y. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. J Control Release 2020;321:363-71. [PMID: 32061622 DOI: 10.1016/j.jconrel.2020.02.021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
114 Chudal L, Pandey NK, Phan J, Johnson O, Lin L, Yu H, Shu Y, Huang Z, Xing M, Liu JP, Chen M, Chen W. Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment. ACS Appl Bio Mater 2020;3:1804-14. [DOI: 10.1021/acsabm.0c00098] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
115 Wang J, Li N, Cao L, Gao C, Zhang Y, Shuai Q, Xie J, Luo K, Yang J, Gu Z. DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells. J Mater Chem B 2020;8:1157-70. [PMID: 31951231 DOI: 10.1039/c9tb02130b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
116 Cheng X, Zeng X, Zheng Y, Fang Q, Wang X, Wang J, Tang R. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J Colloid Interface Sci 2020;565:254-69. [PMID: 31978788 DOI: 10.1016/j.jcis.2020.01.029] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
117 Das S, Das MK, Deka T, Singha LR, Das P. Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
118 Zhang Y, Huang L. Liposomal delivery system. Nanoparticles for Biomedical Applications. Elsevier; 2020. pp. 145-52. [DOI: 10.1016/b978-0-12-816662-8.00010-2] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
119 Ahlawat J, Narayan M. Introduction to Active, Smart, and Intelligent Nanomaterials for Biomedical Application. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00001-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
120 Krechetov S, Yakovcheva M, Babenechev A, Krasnyk I. DEVELOPMENT OF NANOSTRUCTURED POLYMERIC MICROPARTICLES WITH RADACHLORINE AS A COMPLEX DELIVERY SYSTEM FOR PHOTODYNAMIC THERAPY. BIOTECHNOLOGY: STATE OF THE ART AND PERSPECTIVES 2020. [DOI: 10.37747/2312-640x-2020-18-160-163] [Reference Citation Analysis]
121 Liu N, Liu H, Chen H, Wang G, Teng H, Chang Y. Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2020;188:110753. [PMID: 31884084 DOI: 10.1016/j.colsurfb.2019.110753] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
122 Yang Z, Guo Q, Cai Y, Zhu X, Zhu C, Li Y, Li B. Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. J Orthop Translat 2020;21:57-65. [PMID: 32099805 DOI: 10.1016/j.jot.2019.11.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
123 Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020;317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
124 Meng Y, Han S, Gu Z, Wu J. Cysteine‐Based Biomaterials as Drug Nanocarriers. Adv Therap 2020;3:1900142. [DOI: 10.1002/adtp.201900142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
125 Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors. ACS Appl Mater Interfaces 2019;11:46112-23. [PMID: 31722522 DOI: 10.1021/acsami.9b15848] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
126 Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater 2019;99:412-25. [PMID: 31494294 DOI: 10.1016/j.actbio.2019.09.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
127 Sun L, Jiao X, Liu W, Wang Y, Cao Y, Bao SJ, Xu Z, Kang Y, Xue P. Novel Oxygen-Deficient Zirconia (ZrO2-x) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. ACS Appl Mater Interfaces 2019;11:41127-39. [PMID: 31610123 DOI: 10.1021/acsami.9b16604] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
128 Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharmaceutics 2019;16:4594-609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 7.3] [Reference Citation Analysis]
129 Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2020;14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
130 Zhou X, Ling K, Liu M, Zhang X, Ding J, Dong Y, Liang Z, Li J, Zhang J. Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics 2019;9:6568-86. [PMID: 31588236 DOI: 10.7150/thno.35353] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
131 Huang P, Wang G, Su Y, Zhou Y, Huang W, Zhang R, Yan D. Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment. Theranostics 2019;9:5755-68. [PMID: 31534517 DOI: 10.7150/thno.36163] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
132 Kim DM, Shim YH, Kwon H, Kim JP, Park JI, Kim DH, Kim DH, Kim JH, Jeong YI. CD44 Receptor-Specific and Redox-Sensitive Nanophotosensitizers of Hyaluronic Acid-Chlorin e6 Tetramer Having Diselenide Linkages for Photodynamic Treatment of Cancer Cells. J Pharm Sci 2019;108:3713-22. [PMID: 31394112 DOI: 10.1016/j.xphs.2019.07.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
133 Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019;26:416-32. [PMID: 30929527 DOI: 10.1080/10717544.2019.1588424] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 17.0] [Reference Citation Analysis]
134 Liu J, Li F, Zheng J, Li B, Zhang D, Jia L. Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer. J Nanobiotechnology 2019;17:78. [PMID: 31269964 DOI: 10.1186/s12951-019-0510-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
135 Liu Y, Suo X, Peng H, Yan W, Li H, Yang X, Li Z, Zhang J, Liu D. Multifunctional Magnetic Nanoplatform Eliminates Cancer Stem Cells via Inhibiting the Secretion of Extracellular Heat Shock Protein 90. Adv Healthc Mater 2019;8:e1900160. [PMID: 30969015 DOI: 10.1002/adhm.201900160] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
136 Ficai A. Triggering Factors in Drug Delivery Devices. Curr Pharm Des 2019;25:107-8. [PMID: 31198109 DOI: 10.2174/138161282502190514121641] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
137 Lyu Y, Xiao Q, Li Y, Wu Y, He W, Yin L. "Locked" cancer cells are more sensitive to chemotherapy. Bioeng Transl Med 2019;4:e10130. [PMID: 31249880 DOI: 10.1002/btm2.10130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
138 Liu X, Xie Z, Shi W, He Z, Liu Y, Su H, Sun Y, Ge D. Polynorepinephrine Nanoparticles: A Novel Photothermal Nanoagent for Chemo-Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2019;11:19763-73. [DOI: 10.1021/acsami.9b03458] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
139 Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. CTMC 2019;19:205-22. [DOI: 10.2174/1568026619666190122144217] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
140 Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv and Transl Res 2019;9:721-34. [DOI: 10.1007/s13346-019-00631-4] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 17.3] [Reference Citation Analysis]
141 Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen ZY, Chen X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Adv Sci (Weinh) 2019;6:1801986. [PMID: 30886808 DOI: 10.1002/advs.201801986] [Cited by in Crossref: 152] [Cited by in F6Publishing: 163] [Article Influence: 38.0] [Reference Citation Analysis]
142 Gera M, Kim N, Ghosh M, Sharma N, Huynh DL, Chandimali N, Koh H, Zhang JJ, Kang TY, Park YH, Kwon T, Jeong DK. Synthesis and evaluation of the antiproliferative efficacy of BRM270 phytocomposite nanoparticles against human hepatoma cancer cell lines. Mater Sci Eng C Mater Biol Appl 2019;97:166-76. [PMID: 30678901 DOI: 10.1016/j.msec.2018.11.055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
143 Li L, Yang WW, Xu DG. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 2019;27:423-33. [PMID: 30173577 DOI: 10.1080/1061186X.2018.1519029] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
144 Wang Y, Jiang Z, Yuan B, Tian Y, Xiang L, Li Y, Yang Y, Li J, Wu A. A Y 1 receptor ligand synergized with a P-glycoprotein inhibitor improves the therapeutic efficacy of multidrug resistant breast cancer. Biomater Sci 2019;7:4748-57. [DOI: 10.1039/c9bm00337a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
145 Shah MR, Imran M, Ullah S. Ligand-functionalized nanocarrier-based active drugs targeting for liver cancer therapy. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816773-1.00004-3] [Reference Citation Analysis]
146 Shah MR, Imran M, Ullah S. Nanotechnological strategies involved in the targeted delivery of anticancer drugs. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816773-1.00002-x] [Reference Citation Analysis]
147 M SM, Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv Drug Deliv Rev 2019;138:18-40. [PMID: 30321621 DOI: 10.1016/j.addr.2018.10.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
148 Al-zeheimi N, Adham SA. Therapies to Overcome Multidrug-Resistant Receptors. Resistance to Targeted Anti-Cancer Therapeutics 2019. [DOI: 10.1007/978-3-030-21477-7_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
149 Mohammad IS, Teng C, Chaurasiya B, Yin L, Wu C, He W. Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int J Pharm 2019;557:304-13. [PMID: 30599232 DOI: 10.1016/j.ijpharm.2018.12.067] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
150 Xu L, Zhao M, Zhang H, Gao W, Guo Z, Zhang X, Zhang J, Cao J, Pu Y, He B. Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles. Biomacromolecules 2018;19:4658-67. [DOI: 10.1021/acs.biomac.8b01423] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
151 Ou Y, Chen K, Cai H, Zhang H, Gong Q, Wang J, Chen W, Luo K. Enzyme/pH-sensitive polyHPMA-DOX conjugate as a biocompatible and efficient anticancer agent. Biomater Sci 2018;6:1177-88. [PMID: 29564431 DOI: 10.1039/C8BM00095F] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
152 Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, Zhang F, Wang J, Chen X. Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. Adv Mater 2018;:e1803926. [PMID: 30168612 DOI: 10.1002/adma.201803926] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 18.4] [Reference Citation Analysis]
153 Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018;13:4727-45. [PMID: 30154657 DOI: 10.2147/IJN.S168053] [Cited by in Crossref: 116] [Cited by in F6Publishing: 124] [Article Influence: 23.2] [Reference Citation Analysis]
154 Shi S, Zhang L, Zhu M, Wan G, Li C, Zhang J, Wang Y, Wang Y. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Appl Mater Interfaces 2018;10:29260-72. [DOI: 10.1021/acsami.8b08269] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 10.8] [Reference Citation Analysis]
155 Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018;6:110. [PMID: 30159310 DOI: 10.3389/fbioe.2018.00110] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 16.2] [Reference Citation Analysis]
156 Tan J, Deng Z, Liu G, Hu J, Liu S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 2018;178:608-19. [PMID: 29605185 DOI: 10.1016/j.biomaterials.2018.03.035] [Cited by in Crossref: 77] [Cited by in F6Publishing: 78] [Article Influence: 15.4] [Reference Citation Analysis]
157 Zhang W, Zhang J, Qiao Z, Liu H, Wu Z, Yin J. Facile fabrication of positively-charged helical poly(phenyl isocyanide) modified multi-stimuli-responsive nanoassembly capable of high efficiency cell-penetrating, ratiometric fluorescence imaging, and rapid intracellular drug release. Polym Chem 2018;9:4233-42. [DOI: 10.1039/c8py00865e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]