BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017;7:3667-89. [PMID: 29109768 DOI: 10.7150/thno.19365] [Cited by in Crossref: 227] [Cited by in F6Publishing: 261] [Article Influence: 37.8] [Reference Citation Analysis]
Number Citing Articles
1 Yang S, Pai J, Yao C, Huang C, Chen JL, Wang C, Chen K, Shieh M. SN38-loaded nanomedicine mediates chemo-radiotherapy against CD44-expressing cancer growth. Cancer Nano 2023;14:1. [DOI: 10.1186/s12645-022-00151-w] [Reference Citation Analysis]
2 Mohanty S, Panda S, Devadharshini U, Paul S. Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023;1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Reference Citation Analysis]
3 Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Recent Progress in Carrier-Free Nanomedicine for Tumor Phototherapy. Adv Healthc Mater 2023;12:e2202307. [PMID: 36349844 DOI: 10.1002/adhm.202202307] [Reference Citation Analysis]
4 Zhang D, Chen B, Pan Y, Liu H, Shi Y, Chen L, Kumar Kankala R, Wang S, Chen A. Albumin-based smart nanoplatform for ultrasound-mediated enhanced chemo‐sonodynamic combination therapy. Materials & Design 2023. [DOI: 10.1016/j.matdes.2023.111794] [Reference Citation Analysis]
5 Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, De Keersmaecker H, Boterberg V, Dubruel P, Vandekerckhove B, De Smedt SC, De Vos WH, Braeckmans K. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release 2023;354:680-93. [PMID: 36681281 DOI: 10.1016/j.jconrel.2023.01.047] [Reference Citation Analysis]
6 Yaray K, Norbakhsh A, Rashidzadeh H, Mohammadi A, Mozafari F, Ghaffarlou M, Mousazadeh N, Ghaderzadeh R, Ghorbani Y, Nasehi L, Danafar H, Nuri Ertas Y. Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation. Inorganic Chemistry Communications 2023. [DOI: 10.1016/j.inoche.2023.110457] [Reference Citation Analysis]
7 Choi PS, Lee JY, Chae JH, Wadas T, Cheng Z, Hur MG, Park JH. Theranostics through Utilizing Cherenkov Radiation of Radioisotope Zr-89 with a Nanocomposite Combination of TiO(2) and MnO(2). ACS Appl Mater Interfaces 2023;15:3689-98. [PMID: 36573583 DOI: 10.1021/acsami.2c09195] [Reference Citation Analysis]
8 Perumal V, Ravula AR, Agas A, Kannan M, Liu X, I SS, Vijayaraghavalu S, Haorah J, Zhang Y, Chandra N. Transferrin-Grafted Albumin Nanoparticles for the Targeted Delivery of Apocynin and Neuroprotection in an In Vitro Model of the BBB. Micro 2023;3:84-106. [DOI: 10.3390/micro3010008] [Reference Citation Analysis]
9 Gao D, Li Y, Wu Y, Liu Y, Hu D, Liang S, Liao J, Pan M, Zhang P, Li K, Liu X, Zheng H, Sheng Z. Albumin-Consolidated AIEgens for Boosting Glioma and Cerebrovascular NIR-II Fluorescence Imaging. ACS Appl Mater Interfaces 2023;15:3-13. [PMID: 34995067 DOI: 10.1021/acsami.1c22700] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023;15. [PMID: 36678860 DOI: 10.3390/pharmaceutics15010231] [Reference Citation Analysis]
11 Yasri S, Wiwanitkit V. Plant polysaccharide-based conjugates for anticancer drug delivery. Plant Polysaccharides as Pharmaceutical Excipients 2023. [DOI: 10.1016/b978-0-323-90780-4.00022-x] [Reference Citation Analysis]
12 Hornok V, Amin KWK, Kovács AN, Juhász Á, Katona G, Balogh GT, Csapó E. Increased blood-brain barrier permeability of neuroprotective drug by colloidal serum albumin carriers. Colloids and Surfaces B: Biointerfaces 2022;220:112935. [DOI: 10.1016/j.colsurfb.2022.112935] [Reference Citation Analysis]
13 Malik US, Duan Q, Niazi MBK, Jahan Z, Liaqat U, Sher F, Gan Y, Hou H. Vanillin cross-linked hydrogel membranes interfacial reinforced by carbon nitride nanosheets for enhanced antibacterial activity and mechanical properties. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.108071] [Reference Citation Analysis]
14 Wang Y, Iqbal H, Ur-rehman U, Zhai L, Yuan Z, Razzaq A, Lv M, Wei H, Ning X, Xin J, Xiao R. Albumin-based nanodevices for breast cancer diagnosis and therapy. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104072] [Reference Citation Analysis]
15 Patel A, Paul S, Akhtar N, Das S, Kar S, Bhattacharjee S, Manna D. Onium- and Alkyl Amine-Decorated Protein Nanoparticles as Antimicrobial Agents and Carriers of Antibiotics to Promote Synergistic Antibacterial and Antibiofilm Activities. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c03665] [Reference Citation Analysis]
16 Şenol Y, Kaplan O, Varan C, Demirtürk N, Öncül S, Fidan BB, Ercan A, Bilensoy E, Çelebier M. Pharmacometabolomic assessment of vitamin E loaded human serum albumin nanoparticles on HepG2 cancer cell lines. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104017] [Reference Citation Analysis]
17 Pandey V, Haider T, Agrawal P, Soni S, Soni V. Advances in Natural Polymeric Nanoparticles for the Drug Delivery. Advances in Drug Delivery Methods [Working Title] 2022. [DOI: 10.5772/intechopen.107513] [Reference Citation Analysis]
18 Cholujova D, Koklesova L, Lukacova Bujnakova Z, Dutkova E, Valuskova Z, Beblava P, Matisova A, Sedlak J, Jakubikova J. In vitro and ex vivo anti-myeloma effects of nanocomposite As(4)S(4)/ZnS/Fe(3)O(4). Sci Rep 2022;12:17961. [PMID: 36289430 DOI: 10.1038/s41598-022-22672-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Yan A, Zhang Z, Gu J, Ding X, Chen Y, Du J, Wei S, Sun H, Xu J, Yu S, Liu J. Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy. Nano Res . [DOI: 10.1007/s12274-022-4925-y] [Reference Citation Analysis]
20 Chen W, Mei E, Xie X. Virus Stabilization with Enhanced Porous Superabsorbent Polymer (PSAP) Beads for Diagnostics and Surveillance. ACS EST Water 2022. [DOI: 10.1021/acsestwater.2c00239] [Reference Citation Analysis]
21 Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. Biotechnol Bioproc E. [DOI: 10.1007/s12257-022-0104-y] [Reference Citation Analysis]
22 Katona G, Sipos B, Csóka I. Risk-Assessment-Based Optimization Favours the Development of Albumin Nanoparticles with Proper Characteristics Prior to Drug Loading. Pharmaceutics 2022;14:2036. [DOI: 10.3390/pharmaceutics14102036] [Reference Citation Analysis]
23 Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022;14:1965. [PMID: 36145713 DOI: 10.3390/pharmaceutics14091965] [Reference Citation Analysis]
24 Barmin RA, Maksimova EA, Rudakovskaya PG, Gayer AV, Shirshin EA, Petrov KS, Terentyeva DA, Gusliakova OI, Sindeeva OA, Klimenko OA, Chuprov-Netochin RN, Solovev AA, Huang G, Ryabova AV, Loschenov VB, Gorin DA. Albumin microbubbles conjugated with zinc and aluminum phthalocyanine dyes for enhanced photodynamic activity. Colloids Surf B Biointerfaces 2022;219:112856. [PMID: 36150237 DOI: 10.1016/j.colsurfb.2022.112856] [Reference Citation Analysis]
25 Fatima S, Ali M, Quadri SN, Beg S, Samim M, Parvez S, Abdin MZ, Mishra P, Ahmad FJ. Crafting ɣ-L-Glutamyl-l-Cysteine layered Human Serum Albumin-nanoconstructs for brain targeted delivery of ropinirole to attenuate cerebral ischemia/reperfusion injury via "3A approach". Biomaterials 2022;289:121805. [PMID: 36162213 DOI: 10.1016/j.biomaterials.2022.121805] [Reference Citation Analysis]
26 Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. IJMS 2022;23:10557. [DOI: 10.3390/ijms231810557] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022;61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Reference Citation Analysis]
28 Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers 2022;14:4257. [DOI: 10.3390/cancers14174257] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Li J, Li H, Pei S, Kang N, Zhang G, Zhang C, Shuang S. Sensitive Detection of Sulfur Dioxide by Constructing a Protein Supramolecular Complex: a New Fluorescence Sensing Strategy. Food Anal Methods. [DOI: 10.1007/s12161-022-02365-5] [Reference Citation Analysis]
30 Cheng M, Dai D. Inhibitory of active dual cancer targeting 5-Fluorouracil nanoparticles on liver cancer in vitro and in vivo. Front Oncol 2022;12:971475. [DOI: 10.3389/fonc.2022.971475] [Reference Citation Analysis]
31 Ye Z, Gao L, Cai J, Wang Y, Li Y, Tong S, Yan T, Sun Q, Qi Y, Xu Y, Jiang H, Zhang S, Zhao L, Zhang S, Chen Q. Esterase-responsive and size-optimized prodrug nanoparticles for effective intracranial drug delivery and glioblastoma treatment. Nanomedicine: Nanotechnology, Biology and Medicine 2022;44:102581. [DOI: 10.1016/j.nano.2022.102581] [Reference Citation Analysis]
32 Lavanya S, Kamath S M, Krishna Rao S, Rajapriya P, Patil S, Sundaresan S. Sustained delivery of andrographolide from 3D porous scaffolds imparting anticancer activity. Journal of Drug Delivery Science and Technology 2022;74:103570. [DOI: 10.1016/j.jddst.2022.103570] [Reference Citation Analysis]
33 Wei L, Zhang D, Xiong B, Zhang S, Zu Y, Jiang S. Inhibition of metastatic bone cancer with a cascade targeting of docetaxel. Journal of Drug Delivery Science and Technology 2022;74:103608. [DOI: 10.1016/j.jddst.2022.103608] [Reference Citation Analysis]
34 Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022;213:166-94. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Sabit H, Abdel-hakeem M, Shoala T, Abdel-ghany S, Abdel-latif MM, Almulhim J, Mansy M. Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022;14:1566. [DOI: 10.3390/pharmaceutics14081566] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews 2022;11:2595-631. [DOI: 10.1515/ntrev-2022-0148] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Estifeeva TM, Barmin RA, Rudakovskaya PG, Nechaeva AM, Luss AL, Mezhuev YO, Chernyshev VS, Krivoborodov EG, Klimenko OA, Sindeeva OA, Demina PA, Petrov KS, Chuprov-Netochin RN, Fedotkina EP, Korotchenko OE, Sencha EA, Sencha AN, Shtilman MI, Gorin DA. Hybrid (Bovine Serum Albumin)/Poly(N-vinyl-2-pyrrolidone-co-acrylic acid)-Shelled Microbubbles as Advanced Ultrasound Contrast Agents. ACS Appl Bio Mater 2022. [PMID: 35791763 DOI: 10.1021/acsabm.2c00331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Heidari S, Akhlaghi M, Sadeghi M, Kheirabadi AM, Beiki D, Ardekani AE, Rouhollah A, Saeidzadeh P, Soleyman R. Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. Journal of Drug Delivery Science and Technology 2022;73:103477. [DOI: 10.1016/j.jddst.2022.103477] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022;13:909526. [DOI: 10.3389/fphar.2022.909526] [Reference Citation Analysis]
40 Zheng Y, She D, Huang H, Lin L, Chen S, Lu Y, Liu L, Pang Z, Yin B. Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma. Nano Res . [DOI: 10.1007/s12274-022-4542-9] [Reference Citation Analysis]
41 Jing W, Jiang M, Fu X, Yang J, Chen L, Leng F, Xu P, Huang W, Yu C, Yang Z. Self-assembly drug-albumin nanocomposites for nonalcoholic fatty liver disease treatment. Int J Biol Macromol 2022:S0141-8130(22)01380-0. [PMID: 35777511 DOI: 10.1016/j.ijbiomac.2022.06.167] [Reference Citation Analysis]
42 Kochubey V, Yanina I. Model of a Photosensitizer for Photodynamic Therapy Based on Upconversion Nanoparticles. 2022 International Conference Laser Optics (ICLO) 2022. [DOI: 10.1109/iclo54117.2022.9840262] [Reference Citation Analysis]
43 Cruz-nova P, Ancira-cortez A, Ferro-flores G, Ocampo-garcía B, Gibbens-bandala B. Controlled-Release Nanosystems with a Dual Function of Targeted Therapy and Radiotherapy in Colorectal Cancer. Pharmaceutics 2022;14:1095. [DOI: 10.3390/pharmaceutics14051095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Li W, Shan T, Wang N, Li J, Liu Y, Suo S. Research on Mechanism of Hypoxia-Inducible Factor-1α Gene Carried with Albumin Nanoparticles in Regulating Tumor Angiogenesis in Human Papillomavirus Through Induction of PI3K/AKT Signal Pathway. sci adv mater 2022;14:891-897. [DOI: 10.1166/sam.2022.4268] [Reference Citation Analysis]
45 Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. Journal of Drug Delivery Science and Technology 2022;71:103280. [DOI: 10.1016/j.jddst.2022.103280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Xia YN, Zu H, Guo H, Jiang T, Yang S, Yu H, Zhang S, Ding H, Li X, Wang Y, Wang Y, Zhang LW. Preclinical safety and hepatotoxicity evaluation of biomineralized copper sulfide nanoagents. J Nanobiotechnology 2022;20:185. [PMID: 35414075 DOI: 10.1186/s12951-022-01399-5] [Reference Citation Analysis]
47 Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022;23:4101. [PMID: 35456918 DOI: 10.3390/ijms23084101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Radwan SE, El-Moslemany RM, Mehanna RA, Thabet EH, Abdelfattah EA, El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv 2022;29:1150-63. [PMID: 35384774 DOI: 10.1080/10717544.2022.2058648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Gu X, Liu Z, Tai Y, Zhou L, Liu K, Kong D, Midgley AC, Zuo X. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. Prog Biomed Eng 2022;4:022006. [DOI: 10.1088/2516-1091/ac6e18] [Reference Citation Analysis]
50 Lu H, Huang G, Chang W, Lu T, Huang T, Ho M, Mi F. Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydrate Polymers 2022;281:119035. [DOI: 10.1016/j.carbpol.2021.119035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
51 Abbas G, Maqbool S, Shahzad MK, Afzaal M, Daud MU, Fatima NG, Ghuffar A. Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core-shell structures for hyperthermia treatment. RSC Adv 2022;12:9292-8. [PMID: 35424852 DOI: 10.1039/d2ra00618a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Stahorský M, Lukáčová Bujňáková Z, Dutková E, Kello M, Mahlovanyi B, Shpotyuk Y, Daneu N, Trajić J, Baláž M. Mechanochemical Preparation, Characterization and Biological Activity of Stable CuS Nanosuspension Capped by Bovine Serum Albumin. Front Chem 2022;10:836795. [PMID: 35242741 DOI: 10.3389/fchem.2022.836795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Patra B, Mishra AK, Verma RS. Label-free serum albumin nanoparticles for bioimaging and Trojan horse-like drug delivery. Journal of Science: Advanced Materials and Devices 2022;7:100406. [DOI: 10.1016/j.jsamd.2021.100406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Huang J, Zhang Y, Tao C, Li S, You Q, Zhang D, Li Z, Yamaguchi Y. Separation of proteins by square-wave pulsed field and inversion field capillary electrophoresis. Journal of the Taiwan Institute of Chemical Engineers 2022;132:104145. [DOI: 10.1016/j.jtice.2021.11.012] [Reference Citation Analysis]
55 Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS Appl Bio Mater 2022. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Resen AK, Atiroğlu A, Atiroğlu V, Guney Eskiler G, Aziz IH, Kaleli S, Özacar M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron‑based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol 2022;198:175-86. [PMID: 34973989 DOI: 10.1016/j.ijbiomac.2021.12.130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Otri I, Medaglia S, Aznar E, Sancenón F, Martínez-Máñez R. Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules 2022;27:1133. [PMID: 35164400 DOI: 10.3390/molecules27031133] [Reference Citation Analysis]
59 Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. Nanoscale 2022. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022;14:622. [PMID: 35158888 DOI: 10.3390/cancers14030622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
61 Kang NW, Lee JY, Kim DD. Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. J Control Release 2022;342:111-21. [PMID: 34990700 DOI: 10.1016/j.jconrel.2021.12.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Liu R, Xu B, Ma Z, Ye H, Guan X, Ke Y, Xiang Z, Shi Q. Controlled release of nitric oxide for enhanced tumor drug delivery and reduction of thrombosis risk. RSC Adv 2022;12:32355-32364. [DOI: 10.1039/d2ra05438h] [Reference Citation Analysis]
63 Parikh KJ, Christian JR, Rajpoot K, Tekade RK. Environmental and safety aspects of bionanotechnology. Pharmacokinetics and Toxicokinetic Considerations 2022. [DOI: 10.1016/b978-0-323-98367-9.00022-6] [Reference Citation Analysis]
64 Vasilakaki M, Ntallis N, Fiorani D, Peddis D, Trohidou KN. Effect of albumin coating on the magnetic behavior of Mn ferrite nanoclusters. Nanoscale Adv . [DOI: 10.1039/d2na00458e] [Reference Citation Analysis]
65 Hu D, Qian Z. Cholesterol in drug delivery systems. Cholesterol 2022. [DOI: 10.1016/b978-0-323-85857-1.00008-0] [Reference Citation Analysis]
66 Kaushik P, Kaushik M, Parvez S. Novel therapeutic approaches targeting oxidative stress in breast and lung cancer. Novel Therapeutic Approaches Targeting Oxidative Stress 2022. [DOI: 10.1016/b978-0-323-90905-1.00010-9] [Reference Citation Analysis]
67 Hu Y, Gaillard PJ, Rip J, Hammarlund-udenaes M. Blood-to-Brain Drug Delivery Using Nanocarriers. Drug Delivery to the Brain 2022. [DOI: 10.1007/978-3-030-88773-5_16] [Reference Citation Analysis]
68 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_50-1] [Reference Citation Analysis]
69 Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater 2022;34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 35.0] [Reference Citation Analysis]
70 Aluri SR. Protein and Peptide-Based Therapeutics for Cancer Imaging. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications 2022. [DOI: 10.1007/978-3-031-09636-5_16] [Reference Citation Analysis]
71 Chen X, Cen L, Liu Q, Chu Y, Feng X, Ke Y, Zhang Z, Dai H, Huang S, Liu B, Qian X. A dual-adjuvant neoantigen nanovaccine loaded with imiquimod and magnesium enhances anti-tumor immune responses of melanoma. Biomater Sci 2022. [DOI: 10.1039/d2bm01340a] [Reference Citation Analysis]
72 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_50] [Reference Citation Analysis]
73 Duan Q, Shi J, Zhou L, Zhang B, Wang X, Sang S. pH-responsive and sustained release drug delivery system of BSA coated CDs-DOX. Journal of Molecular Structure 2022;1248:131358. [DOI: 10.1016/j.molstruc.2021.131358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
74 Ang MJY, Yoon J, Zhou M, Wei HL, Goh YY, Li Z, Feng J, Wang H, Su Q, Ong DST, Liu X. Deciphering Nanoparticle Trafficking into Glioblastomas Uncovers an Augmented Antitumor Effect of Metronomic Chemotherapy. Adv Mater 2022;34:e2106194. [PMID: 34726310 DOI: 10.1002/adma.202106194] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
75 Zwain T, Taneja N, Zwayen S, Shidhaye A, Palshetkar A, Singh KK. Albumin nanoparticles—A versatile and a safe platform for drug delivery applications. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00008-9] [Reference Citation Analysis]
76 Yang SJ, Huang HT, Huang CH, Pai JA, Wang CH, Shieh MJ. The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment. Nanomedicine (Lond) 2022;17:23-40. [PMID: 34918941 DOI: 10.2217/nnm-2021-0187] [Reference Citation Analysis]
77 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021;9:746646. [PMID: 34869202 DOI: 10.3389/fchem.2021.746646] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
79 Anselmo S, Cataldo S, Avola T, Sancataldo G, D'Oca MC, Fiore T, Muratore N, Scopelliti M, Pettignano A, Vetri V. Lead(II) ions adsorption onto amyloid particulates: An in depth study. J Colloid Interface Sci 2021;610:347-58. [PMID: 34923272 DOI: 10.1016/j.jcis.2021.11.184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021;191:591-9. [PMID: 34562538 DOI: 10.1016/j.ijbiomac.2021.09.112] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
81 Huang Y, Wang L, Cheng Z, Yang B, Yu J, Chen Y, Lu W. SN38-based albumin-binding prodrug for efficient targeted cancer chemotherapy. J Control Release 2021;339:297-306. [PMID: 34619226 DOI: 10.1016/j.jconrel.2021.09.040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
82 Hornok V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers (Basel) 2021;13:3759. [PMID: 34771316 DOI: 10.3390/polym13213759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
83 Popova T, Dymova MA, Koroleva LS, Zakharova OD, Lisitskiy VA, Raskolupova VI, Sycheva T, Taskaev S, Silnikov VN, Godovikova TS. Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy. Molecules 2021;26:6537. [PMID: 34770947 DOI: 10.3390/molecules26216537] [Reference Citation Analysis]
84 Balmori A, Sandu R, Gheorghe D, Botea-Petcu A, Precupas A, Tanasescu S, Sánchez-García D, Borrós S. Revising Protein Corona Characterization and Combining ITC and Nano-DSC to Understand the Interaction of Proteins With Porous Nanoparticles. Front Bioeng Biotechnol 2021;9:650281. [PMID: 34708023 DOI: 10.3389/fbioe.2021.650281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Tan T, Yang Q, Chen D, Zhao J, Xiang L, Feng J, Song X, Fu Y, Gong T. Chondroitin sulfate-mediated albumin corona nanoparticles for the treatment of breast cancer. Asian J Pharm Sci 2021;16:508-18. [PMID: 34703499 DOI: 10.1016/j.ajps.2021.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
86 Yu J, Zhang J, Jin J, Jiang W. Microenvironment-responsive DNA-conjugated albumin nanocarriers for targeted therapy. J Mater Chem B 2021;9:8424-36. [PMID: 34542145 DOI: 10.1039/d1tb01022k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
87 Chen W, Wang T, Dou Z, Xie X. Self-Driven Pretreatment and Room-Temperature Storage of Water Samples for Virus Detection Using Enhanced Porous Superabsorbent Polymer Beads. Environ Sci Technol 2021;55:14059-68. [PMID: 34609845 DOI: 10.1021/acs.est.1c03414] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Chen T, Yuan M, Tao Y, Ren X, Li S. Engineering of Self-assembly Polymers Encapsulated with Dual Anticancer Drugs for the Treatment of Endometrial Cancer. J Clust Sci. [DOI: 10.1007/s10876-021-02175-5] [Reference Citation Analysis]
89 Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, Doeppner TR, Zeng M, Liu W, Xu G, Ren L, Zhang Y, Liu W, Casals E, Li W, Wang YC. A Co-Doped Fe3O4 Nanozyme Shows Enhanced Reactive Oxygen and Nitrogen Species Scavenging Activity and Ameliorates the Deleterious Effects of Ischemic Stroke. ACS Appl Mater Interfaces 2021;13:46213-24. [PMID: 34546708 DOI: 10.1021/acsami.1c06449] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
90 Akbal Vural O. Evaluation of protein functionalized gold nanoparticles to improve tamoxifen delivery: synthesis, characterization, and biocompatibility on breast cancer cells. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1981321] [Reference Citation Analysis]
91 Lunin AV, Korenkov ES, Mochalova EN, Nikitin MP. Green Synthesis of Size-Controlled in Vivo Biocompatible Immunoglobulin-Based Nanoparticles by a Swift Thermal Formation. ACS Sustainable Chem Eng 2021;9:13128-34. [DOI: 10.1021/acssuschemeng.1c03409] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
92 Vighetto V, Racca L, Canta M, Matos JC, Dumontel B, Gonçalves MC, Cauda V. Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics 2021;13:1423. [PMID: 34575499 DOI: 10.3390/pharmaceutics13091423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
93 Elahian F, Safaei M, Khanduzi F, Valinejad H, Bagheri M, Afshari V, Mohseni M, Mirzaei SA. Screening of copper resistant microorganisms in mines and mathematical modeling of bioaccumulation and extracellular nanoparticle biosynthesis by Bacillus cereus. Mater Res Express 2021;8:095402. [DOI: 10.1088/2053-1591/ac233f] [Reference Citation Analysis]
94 Barzegar S, Asri Kojabad A, Manafi Shabestari R, Barati M, Rezvany MR, Safa M, Amani A, Pourfathollah A, Abbaspour A, Rahgoshay M, Hashemi J, Mohammadi Najafabadi M, Zaker F. Use of antioxidant nanoparticles to reduce oxidative stress in blood storage. Biotechnol Appl Biochem 2021. [PMID: 34415072 DOI: 10.1002/bab.2240] [Reference Citation Analysis]
95 Bolaños K, Sánchez-Navarro M, Tapia-Arellano A, Giralt E, Kogan MJ, Araya E. Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics 2021;13:1204. [PMID: 34452165 DOI: 10.3390/pharmaceutics13081204] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
96 Mishra V, Heath RJ. Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021;22:8411. [PMID: 34445120 DOI: 10.3390/ijms22168411] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
97 Ramos-membrive R, Erhard Á, Luis de Redín I, Quincoces G, Collantes M, Ecay M, Irache JM, Peñuelas I. In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. Journal of Drug Delivery Science and Technology 2021;64:101809. [DOI: 10.1016/j.jddst.2020.101809] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
98 Prajapati R, Somoza Á. Albumin Nanostructures for Nucleic Acid Delivery in Cancer: Current Trend, Emerging Issues, and Possible Solutions. Cancers (Basel) 2021;13:3454. [PMID: 34298666 DOI: 10.3390/cancers13143454] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
99 Dou Y, Zhao D, Yang F, Tang Y, Chang J. Natural Phyto-Antioxidant Albumin Nanoagents to Treat Advanced Alzheimer's Disease. ACS Appl Mater Interfaces 2021;13:30373-82. [PMID: 34180234 DOI: 10.1021/acsami.1c07281] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
100 Prajapati R, Garcia-Garrido E, Somoza Á. Albumin-Based Nanoparticles for the Delivery of Doxorubicin in Breast Cancer. Cancers (Basel) 2021;13:3011. [PMID: 34208533 DOI: 10.3390/cancers13123011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
101 Wang R, Zhang Z, Liu B, Xue J, Liu F, Tang T, Liu W, Feng F, Qu W. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater Sci 2021;9:3621-37. [PMID: 34008587 DOI: 10.1039/d0bm02221g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
102 Qian L, Yin X, Ji J, Chen Z, Fang H, Li H, Zhu F, Chang F. Tumor necrosis factor-α small interfering RNA alveolar epithelial cell-targeting nanoparticles reduce lung injury in C57BL/6J mice with sepsis. J Int Med Res 2021;49:300060520984652. [PMID: 33435767 DOI: 10.1177/0300060520984652] [Reference Citation Analysis]
103 Nie T, Wang W, Liu X, Wang Y, Li K, Song X, Zhang J, Yu L, He Z. Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021;22:2299-324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
104 Huang J, You X, Xin P, Gu Z, Chen C, Wu J. Egg white as a natural and safe biomaterial for enhanced cancer therapy. Chinese Chemical Letters 2021;32:1737-42. [DOI: 10.1016/j.cclet.2020.12.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
105 Jiang L, Jiang Y, Li L, Zheng K, Yu S, Li J, Yuan C, Huang M. A supramolecular nanocarrier for efficient cancer imaging and therapy by targeting at matriptase. J Control Release 2021;334:153-63. [PMID: 33894302 DOI: 10.1016/j.jconrel.2021.04.019] [Reference Citation Analysis]
106 Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021:j. [PMID: 33861527 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
107 Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021;18:1261-90. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
108 Yu Y, Ngo HV, Jin G, Tran PHL, Tran TTD, Nguyen VH, Park C, Lee BJ. Double-Controlled Release of Poorly Water-Soluble Paliperidone Palmitate from Self-Assembled Albumin-Oleic Acid Nanoparticles in PLGA in situ Forming Implant. Int J Nanomedicine 2021;16:2819-31. [PMID: 33888982 DOI: 10.2147/IJN.S302514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
109 Zhang J, Zhan P, Tian H. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021;182:115-28. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
110 Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed 2021;60:12446-54. [DOI: 10.1002/anie.202100369] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
111 Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem 2021;133:12554-62. [DOI: 10.1002/ange.202100369] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
112 Tong H, Gao Y, Li J, Li J, Huang D, Shi J, Santos HA, Xia B. Mitochondria‐Targeted Bovine Serum Albumin@Copper Sulfide Nanocomposites Conjugated with Rhodamine‐110 Dye for an Enhanced Efficacy of Cancer Photothermal Therapy. Part Part Syst Charact 2021;38:2100013. [DOI: 10.1002/ppsc.202100013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
113 Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2020;8:4813-30. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
114 Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021;18:1862-94. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Cited by in Crossref: 45] [Cited by in F6Publishing: 59] [Article Influence: 22.5] [Reference Citation Analysis]
115 Han W, Du Y, Song M, Sun K, Xu B, Yan F, Tian W. Fluorescent nanorods based on 9,10-distyrylanthracene (DSA) derivatives for efficient and long-term bioimaging. J Mater Chem B 2020;8:9544-54. [PMID: 33000780 DOI: 10.1039/c9tb02883h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
116 Shanwar S, Liang L, Nechaev AV, Bausheva DK, Balalaeva IV, Vodeneev VA, Roy I, Zvyagin AV, Guryev EL. Controlled Formation of a Protein Corona Composed of Denatured BSA on Upconversion Nanoparticles Improves Their Colloidal Stability. Materials (Basel) 2021;14:1657. [PMID: 33800633 DOI: 10.3390/ma14071657] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
117 Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VTG. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals (Basel) 2021;14:296. [PMID: 33810483 DOI: 10.3390/ph14040296] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
118 Bessone F, Dianzani C, Argenziano M, Cangemi L, Spagnolo R, Maione F, Giraudo E, Cavalli R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. Cancer Drug Resist 2021;4:192-207. [PMID: 35582009 DOI: 10.20517/cdr.2020.65] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021;16:2147-71. [PMID: 33746512 DOI: 10.2147/IJN.S295234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
120 Wang Z, Chen M, Liu JJ, Chen RH, Yu Q, Wang GM, Nie LM, Huang WH, Zhang GJ. Human Serum Albumin Decorated Indocyanine Green Improves Fluorescence-Guided Resection of Residual Lesions of Breast Cancer in Mice. Front Oncol 2021;11:614050. [PMID: 33763353 DOI: 10.3389/fonc.2021.614050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
122 Melo BL, Lima-Sousa R, Alves CG, Ferreira P, Moreira AF, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine (Lond) 2021;16:453-64. [PMID: 33660547 DOI: 10.2217/nnm-2020-0460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
123 Lotfalian S, Nematollahzadeh A, Ghasemi S. Hierarchically structured protein-based hollow-nanospheres for drug delivery. Reactive and Functional Polymers 2021;160:104821. [DOI: 10.1016/j.reactfunctpolym.2021.104821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
124 Curcio M, Diaz-Gomez L, Cirillo G, Nicoletta FP, Leggio A, Iemma F. Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics 2021;13:304. [PMID: 33652648 DOI: 10.3390/pharmaceutics13030304] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
125 Li L, Qian Y, Sun L, Han FY, Zhang R, Wang PY, Xu ZP. Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. Nanomedicine 2021;34:102369. [PMID: 33636347 DOI: 10.1016/j.nano.2021.102369] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
126 Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS Appl Bio Mater 2021;4:1156-77. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
127 Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021;270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
128 Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv 2020;27:662-80. [PMID: 32393082 DOI: 10.1080/10717544.2020.1754527] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
129 Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021;12:601626. [PMID: 33613290 DOI: 10.3389/fphar.2021.601626] [Cited by in Crossref: 81] [Cited by in F6Publishing: 87] [Article Influence: 40.5] [Reference Citation Analysis]
130 Tabassum H, Ahmad IZ. Nanoformulations Loaded with Microalgal Bioactive Compounds for Disease Therapy. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-81557-8_10] [Reference Citation Analysis]
131 Madamsetty VS, Mukherjee A, Paul M. Bioinspired nanoparticles-based drug delivery systems for cancer theranostics. Biogenic Nanoparticles for Cancer Theranostics 2021. [DOI: 10.1016/b978-0-12-821467-1.00008-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Saha S, Roy P, Chakraborty J. Mesoporous silica-biopolymer-based systems in drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00002-5] [Reference Citation Analysis]
133 Abbas M, Ovais M, Mukherjee S, Ali A, Hanif M, Chen C. Nanotechnology for cancer drug design, delivery, and theranostics applications. Biogenic Nanoparticles for Cancer Theranostics 2021. [DOI: 10.1016/b978-0-12-821467-1.00004-5] [Reference Citation Analysis]
134 Leyva-gómez G, Mendoza-muñoz N, Del Prado-audelo ML, Ojeda-piedra SA, Zambrano-zaragoza ML, Quintanar-guerrero D. Natural Polymers in Pharmaceutical Nanotechnology. Nanomaterials and Nanotechnology 2021. [DOI: 10.1007/978-981-33-6056-3_6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
135 Chakravarty R, Guleria A, Jadhav S, Kumar C, Debnath AK, Sarma HD, Chakraborty S. Bioinspired Synthesis of Intrinsically 177 Lu-Labeled Hybrid Nanoparticles for Potential Cancer Therapy. Ind Eng Chem Res 2020;59:22492-500. [DOI: 10.1021/acs.iecr.0c03910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
136 Tsukigawa K, Imoto S, Yamasaki K, Nishi K, Tsutsumi T, Yokoyama S, Ishima Y, Otagiri M. Synthesis and In Vitro Assessment of pH-Sensitive Human Serum Albumin Conjugates of Pirarubicin. Pharmaceuticals (Basel) 2020;14:22. [PMID: 33396604 DOI: 10.3390/ph14010022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
137 Islam W, Matsumoto Y, Fang J, Harada A, Niidome T, Ono K, Tsutsuki H, Sawa T, Imamura T, Sakurai K, Fukumitsu N, Yamamoto H, Maeda H. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2021;269:120631. [PMID: 33450582 DOI: 10.1016/j.biomaterials.2020.120631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
138 Hao L, Zhou Q, Piao Y, Zhou Z, Tang J, Shen Y. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J Control Release 2021;330:362-71. [PMID: 33359484 DOI: 10.1016/j.jconrel.2020.12.035] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
139 Zhang M, Du Y, Wang S, Chen B. A Review of Biomimetic Nanoparticle Drug Delivery Systems Based on Cell Membranes. Drug Des Devel Ther 2020;14:5495-503. [PMID: 33363358 DOI: 10.2147/DDDT.S282368] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
140 Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020;167:170-88. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 20.0] [Reference Citation Analysis]
141 Liu X, Mohanty RP, Maier EY, Peng X, Wulfe S, Looney AP, Aung KL, Ghosh D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. Journal of Controlled Release 2020;328:1-12. [DOI: 10.1016/j.jconrel.2020.08.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
142 Kumari P, Paul M, Bobde Y, Soniya K, Kiran Rompicharla SV, Ghosh B, Biswas S. Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine 2020;15:2851-69. [DOI: 10.2217/nnm-2020-0232] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
143 Starosta R, Santos FC, de Almeida RF. Human and bovine serum albumin time-resolved fluorescence: Tryptophan and tyrosine contributions, effect of DMSO and rotational diffusion. Journal of Molecular Structure 2020;1221:128805. [DOI: 10.1016/j.molstruc.2020.128805] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
144 Li Y, Han Y, Su R, Liu Y, Chong G, Xu D, He R, Liu Y, Dong H, Shi D, Li Y. Photosensitizer-Laden Neutrophils Are Controlled Remotely for Cancer Immunotherapy. Cell Rep 2020;33:108499. [PMID: 33326787 DOI: 10.1016/j.celrep.2020.108499] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
145 Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resist 2020;3:930-46. [PMID: 35582218 DOI: 10.20517/cdr.2020.68] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
146 Hussain A, Hasan A, Babadaei MMN, Bloukh SH, Edis Z, Rasti B, Sharifi M, Falahati M. Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. Journal of Molecular Liquids 2020;318:114053. [DOI: 10.1016/j.molliq.2020.114053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
147 Kalashnikova I, Chung SJ, Nafiujjaman M, Hill ML, Siziba ME, Contag CH, Kim T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020;10:11863-80. [PMID: 33204316 DOI: 10.7150/thno.49069] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
148 Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2021;329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
149 Ahmadabad LE, Kalantari FS, Liu H, Hasan A, Gamasaee NA, Edis Z, Attar F, Ale-Ebrahim M, Rouhollah F, Babadaei MMN, Sharifi M, Shahpasand K, Akhtari K, Falahati M, Cai Y. Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. Mater Sci Eng C Mater Biol Appl 2021;119:111649. [PMID: 33321685 DOI: 10.1016/j.msec.2020.111649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
150 Shah JV, Gonda A, Pemmaraju R, Subash A, Bobadilla Mendez C, Berger M, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Moghe PV, Ganapathy V. Shortwave Infrared-Emitting Theranostics for Breast Cancer Therapy Response Monitoring. Front Mol Biosci 2020;7:569415. [PMID: 33134314 DOI: 10.3389/fmolb.2020.569415] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
151 Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020;10:E1401. [PMID: 33019651 DOI: 10.3390/biom10101401] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
152 Dai Q, Ren E, Xu D, Zeng Y, Chen C, Liu G. Indocyanine green-based nanodrugs: A portfolio strategy for precision medicine. Progress in Natural Science: Materials International 2020;30:577-88. [DOI: 10.1016/j.pnsc.2020.08.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
153 Kim D, Lee SS, Yoo WY, Moon H, Cho A, Park SY, Kim YS, Kim HR, Lee HJ. Combination Therapy with Doxorubicin-Loaded Reduced Albumin Nanoparticles and Focused Ultrasound in Mouse Breast Cancer Xenografts. Pharmaceuticals (Basel) 2020;13:E235. [PMID: 32906686 DOI: 10.3390/ph13090235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
154 Hasanpoor Z, Mostafaie A, Nikokar I, Hassan ZM. Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells. International Journal of Biological Macromolecules 2020;159:137-53. [DOI: 10.1016/j.ijbiomac.2020.04.130] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
155 Hornok V, Juhász Á, Paragi G, Kovács AN, Csapó E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. Journal of Molecular Liquids 2020;313:112869. [DOI: 10.1016/j.molliq.2020.112869] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
156 Özliseli E, Ṣen Karaman D, Chakraborti S, Slita A, Parikainen M, Sahlgren CM, Rosenholm JM. Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;600:124945. [DOI: 10.1016/j.colsurfa.2020.124945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
157 Al-Zharani M, Qurtam AA, Daoush WM, Eisa MH, Aljarba NH, Alkahtani S, Nasr FA. Antitumor effect of copper nanoparticles on human breast and colon malignancies. Environ Sci Pollut Res Int 2021;28:1587-95. [PMID: 32851522 DOI: 10.1007/s11356-020-09843-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
158 Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2021;29:29-45. [PMID: 32672079 DOI: 10.1080/1061186X.2020.1797052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
159 Abniki M, Moghimi A, Azizinejad F. Synthesis of calcium‐layered double hydroxide based nanohybrid for controlled release of an anti‐inflammatory drug. J Chin Chem Soc 2021;68:343-52. [DOI: 10.1002/jccs.202000008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
160 Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and Evaluation of Cabazitaxel-Loaded Bovine Serum Albumin Nanoparticles for Prostate Cancer. Int J Nanomedicine 2020;15:5333-44. [PMID: 32801692 DOI: 10.2147/IJN.S258856] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
161 Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. Small 2020;16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
162 Han R, Peng J, Xiao Y, Hao Y, Jia Y, Qian Z. Ag2S nanoparticles as an emerging single-component theranostic agent. Chinese Chemical Letters 2020;31:1717-28. [DOI: 10.1016/j.cclet.2020.03.038] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
163 de Arcocha-torres M, Quincoces G, Martínez-lópez A, Erhard A, Collantes M, Martínez-rodríguez I, Ecay M, Banzo I, Irache J, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles coated with polymers. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) 2020;39:225-32. [DOI: 10.1016/j.remnie.2020.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
164 Iovino F, Merkl P, Spyrogianni A, Henriques-Normark B, Sotiriou GA. Silica-coated phosphorescent nanoprobes for selective cell targeting and dynamic bioimaging of pathogen-host cell interactions. Chem Commun (Camb) 2020;56:6989-92. [PMID: 32441283 DOI: 10.1039/d0cc00329h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
165 Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020;17:1269-88. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
166 Czub MP, Handing KB, Venkataramany BS, Cooper DR, Shabalin IG, Minor W. Albumin-Based Transport of Nonsteroidal Anti-Inflammatory Drugs in Mammalian Blood Plasma. J Med Chem 2020;63:6847-62. [PMID: 32469516 DOI: 10.1021/acs.jmedchem.0c00225] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
167 Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Adv Funct Mater 2020;30:2003054. [DOI: 10.1002/adfm.202003054] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
168 Van de Sande L, Cosyns S, Willaert W, Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv 2020;27:40-53. [PMID: 31858848 DOI: 10.1080/10717544.2019.1704945] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
169 Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020;35:237-63. [DOI: 10.1177/0885328220924540] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
170 Mirsafaei R, Varshosaz J, Mirsattari SN. Folate-Targeted Polyacrylamide/Punicic Acid Nanomicelles for Flutamide Delivery in Prostate Cancer: Characterization, In Vitro Biological Evaluation, and its DFT Study. Recent Pat Nanotechnol 2020;14:360-74. [PMID: 32400341 DOI: 10.2174/1872210514666200513092614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
171 Liu Y, Guo Q, Sun H, Guo N, Zhang J. Improved therapeutic efficiency of photothermal treatment and nursing care in prostate cancer by DOX loaded PEG coated Cu@Se nano-hybrid vesicle. Process Biochemistry 2020;92:78-84. [DOI: 10.1016/j.procbio.2020.02.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
172 Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E, Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020;84:106535. [PMID: 32361569 DOI: 10.1016/j.intimp.2020.106535] [Cited by in Crossref: 90] [Cited by in F6Publishing: 99] [Article Influence: 30.0] [Reference Citation Analysis]
173 Prada YA, Guzmán F, Ortíz C, Cabanzo R, Torres R, Mejía-Ospino E. New Synthetic Peptides Conjugated to Gold Nanoclusters: Antibiotic Activity Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Protein J 2019;38:506-14. [PMID: 31119600 DOI: 10.1007/s10930-019-09840-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
174 Borlan R, Tatar AS, Soritau O, Maniu D, Marc G, Florea A, Focsan M, Astilean S. Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells. Nanotechnology 2020;31:315102. [PMID: 32315999 DOI: 10.1088/1361-6528/ab8b90] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
175 Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. Nanomicro Lett 2020;12:96. [PMID: 34138079 DOI: 10.1007/s40820-020-00434-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
176 Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm 2020;582:119346. [PMID: 32315749 DOI: 10.1016/j.ijpharm.2020.119346] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
177 Lungu CN, Füstös ME, Grudziński IP, Olteanu G, Putz MV. Protein Interaction with Dendrimer Monolayers: Energy and Surface Topology. Symmetry 2020;12:641. [DOI: 10.3390/sym12040641] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
178 Gharbavi M, Danafar H, Sharafi A. Microemulsion and bovine serum albumin nanoparticles as a novel hybrid nanocarrier system for efficient multifunctional drug delivery. J Biomed Mater Res 2020;108:1688-702. [DOI: 10.1002/jbm.a.36935] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
179 Popova TV, Krumkacheva OA, Burmakova AS, Spitsyna AS, Zakharova OD, Lisitskiy VA, Kirilyuk IA, Silnikov VN, Bowman MK, Bagryanskaya EG, Godovikova TS. Protein modification by thiolactone homocysteine chemistry: a multifunctionalized human serum albumin theranostic. RSC Med Chem 2020;11:1314-25. [PMID: 34085043 DOI: 10.1039/c9md00516a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
180 Achilli E, Siri M, Flores C, Kikot P, Flor S, Martinefski M, Lucangioli S, Alonso SDV, Grasselli M. Radiolysis effect of the high proportion of ethanol in the preparation of albumin nanoparticle. Radiation Physics and Chemistry 2020;169:108775. [DOI: 10.1016/j.radphyschem.2020.108775] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
181 Azizi S, Nosrati H, Danafar H. Simple surface functionalization of magnetic nanoparticles with methotrexate‐conjugated bovine serum albumin as a biocompatible drug delivery vehicle. Appl Organometal Chem 2020;34. [DOI: 10.1002/aoc.5479] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
182 Xie C, Cen D, Ren Z, Wang Y, Wu Y, Li X, Han G, Cai X. FeS@BSA Nanoclusters to Enable H2S-Amplified ROS-Based Therapy with MRI Guidance. Adv Sci (Weinh) 2020;7:1903512. [PMID: 32274323 DOI: 10.1002/advs.201903512] [Cited by in Crossref: 59] [Cited by in F6Publishing: 66] [Article Influence: 19.7] [Reference Citation Analysis]
183 Ma H, Yang X, Ke J, Wang C, Peng L, Hu F, Yuan H. Smart Assembled Human Serum Albumin Nanocarrier Enhanced Breast Cancer Treatment and Antitumor Immunity by Chemo- photothermal Therapy. ACS Biomater Sci Eng 2020;6:3217-29. [DOI: 10.1021/acsbiomaterials.0c00286] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
184 Dhital S, Vyavahare NR. Nanoparticle-based targeted delivery of pentagalloyl glucose reverses elastase-induced abdominal aortic aneurysm and restores aorta to the healthy state in mice. PLoS One 2020;15:e0227165. [PMID: 32218565 DOI: 10.1371/journal.pone.0227165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
185 Xing P, Niu Y, Mu R, Wang Z, Xie D, Li H, Dong L, Wang C. A pocket-escaping design to prevent the common interference with near-infrared fluorescent probes in vivo. Nat Commun 2020;11:1573. [PMID: 32218438 DOI: 10.1038/s41467-020-15323-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
186 Li Z, Zheng Z, Li C, Li Z, Wu J, Zhang B. Therapeutic drugs and drug delivery systems targeting stromal cells for cancer therapy: a review. Journal of Drug Targeting 2020;28:714-26. [DOI: 10.1080/1061186x.2020.1744157] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
187 de Arcocha-Torres M, Quincoces G, Martínez-López AL, Erhard A, Collantes M, Martínez-Rodríguez I, Ecay M, Banzo I, Irache JM, Peñuelas I. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles covered with polymers. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020;39:225-32. [PMID: 32201272 DOI: 10.1016/j.remn.2020.02.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
188 Theodorou A, Liarou E, Haddleton DM, Stavrakaki IG, Skordalidis P, Whitfield R, Anastasaki A, Velonia K. Protein-polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nat Commun 2020;11:1486. [PMID: 32198365 DOI: 10.1038/s41467-020-15259-z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 16.7] [Reference Citation Analysis]
189 An F, Yang Z, Zheng M, Mei T, Deng G, Guo P, Li Y, Sheng R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J Nanobiotechnology 2020;18:49. [PMID: 32183838 DOI: 10.1186/s12951-020-00603-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
190 Lee D, Hong JH. Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020;12:E217. [PMID: 32131531 DOI: 10.3390/pharmaceutics12030217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
191 Chen J, He G, Xian G, Su X, Yu L, Yao F. Mechanistic biosynthesis of SN-38 coated reduced graphene oxide sheets for photothermal treatment and care of patients with gastric cancer. Journal of Photochemistry and Photobiology B: Biology 2020;204:111736. [DOI: 10.1016/j.jphotobiol.2019.111736] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
192 Wu R, Peng H, Zhu JJ, Jiang LP, Liu J. Attaching DNA to Gold Nanoparticles With a Protein Corona. Front Chem 2020;8:121. [PMID: 32161750 DOI: 10.3389/fchem.2020.00121] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
193 Deng H, Liao J, Piao J, Zhang Y, He S, Zhou Q, Li Y, Zhang L. Polytetrafluoroethylene‐intercalated MXene membranes with good photothermal performance for enhanced laser ignition. J Appl Polym Sci 2020;137:49137. [DOI: 10.1002/app.49137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
194 Curcio M, Avena P, Cirillo G, Casaburi I, Spizzirri UG, Nicoletta FP, Iemma F, Pezzi V. Functional Albumin Nanoformulations to Fight Adrenocortical Carcinoma: a Redox-Responsive Approach. Pharm Res 2020;37. [DOI: 10.1007/s11095-020-2775-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
195 Truong DH, Le VKH, Pham TT, Dao AH, Pham TPD, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. Journal of Drug Delivery Science and Technology 2020;55:101348. [DOI: 10.1016/j.jddst.2019.101348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
196 Vasilakaki M, Ntallis N, Bellusci M, Varsano F, Mathieu R, Fiorani D, Peddis D, Trohidou KN. Effect of albumin mediated clustering on the magnetic behavior of MnFe2O4 nanoparticles: experimental and theoretical modeling study. Nanotechnology 2020;31:025707. [PMID: 31603864 DOI: 10.1088/1361-6528/ab4764] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
197 Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020;43:118-33. [PMID: 31916145 DOI: 10.1007/s12272-020-01204-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
198 Karami K, Jamshidian N, Hajiaghasi A, Amirghofran Z. BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem 2020;44:4394-405. [DOI: 10.1039/c9nj05847h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
199 Christensen JB. Dendrimers for pharmaceutical applications—potential and challenges. Delivery of Drugs 2020. [DOI: 10.1016/b978-0-12-817776-1.00002-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
200 An JM, Moon H, Kim Y, Kang S, Kim Y, Jung Y, Park S, Verwilst P, Kim BM, Kang JS, Kim D. Visualizing mitochondria and mouse intestine with a fluorescent complex of a naphthalene-based dipolar dye and serum albumin. J Mater Chem B 2020;8:7642-51. [DOI: 10.1039/d0tb01314e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
201 Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, Hsu CC, Yang HY, Hwang DK, Chen SJ, Tsai ML, Lai YH, Tzeng Y, Chang CC, Chiou SH. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater 2020;101:484-94. [PMID: 31672582 DOI: 10.1016/j.actbio.2019.10.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
202 Schwarze B, Gozzi M, Zilberfain C, Rüdiger J, Birkemeyer C, Estrela-lopis I, Hey-hawkins E. Nanoparticle-based formulation of metallacarboranes with bovine serum albumin for application in cell cultures. J Nanopart Res 2020;22:24. [DOI: 10.1007/s11051-019-4708-x] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
203 Liu C, Cui Z, Zhang X, Mao S. Nanobiomaterials in Drug Delivery: Designing Strategies and Critical Concepts for Their Potential Clinical Applications. Nanobiomaterial Engineering 2020. [DOI: 10.1007/978-981-32-9840-8_13] [Reference Citation Analysis]
204 Sun Y, Lee RJ, Meng F, Wang G, Zheng X, Dong S, Teng L. Microfluidic self-assembly of high cabazitaxel loading albumin nanoparticles. Nanoscale 2020;12:16928-33. [DOI: 10.1039/c9nr10941b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
205 Margulis K, Honkala A, Kalashnikova I, Noll SE, Hill M, Zare RN, Smith BR. Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells. Nanoscale 2020;12:2752-63. [DOI: 10.1039/c9nr06494j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
206 Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020;15:576-90. [PMID: 33193861 DOI: 10.1016/j.ajps.2019.10.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
207 Chen Z, Yu H, Lu W, Shen J, Wang Y, Wang Y. Bone-Seeking Albumin-Nanomedicine for In Vivo Imaging and Therapeutic Monitoring. ACS Biomater Sci Eng 2020;6:647-53. [PMID: 33463196 DOI: 10.1021/acsbiomaterials.9b01195] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
208 Zhang S, Asghar S, Yang L, Hu Z, Chen Z, Shao F, Xiao Y. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2020;575:119002. [PMID: 31893546 DOI: 10.1016/j.ijpharm.2019.119002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
209 Siri M, Grasselli M, Alonso SDV. Media interaction and stability of a gamma irradiated albumin nanoparticle. J Biotechnol 2019;306:169-76. [PMID: 31605747 DOI: 10.1016/j.jbiotec.2019.10.001] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
210 Vong K, Eda S, Kadota Y, Nasibullin I, Wakatake T, Yokoshima S, Shirasu K, Tanaka K. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nat Commun 2019;10:5746. [PMID: 31848337 DOI: 10.1038/s41467-019-13758-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
211 Dhital S, Vyavahare NR. Nanoparticle-based targeted delivery of pentagalloyl glucose reverses elastase-induced abdominal aortic aneurysm and restores aorta to the healthy state in mice.. [DOI: 10.1101/2019.12.16.878017] [Reference Citation Analysis]
212 Quinteros MA, Bonilla JO, Alborés SV, Villegas LB, Páez PL. Biogenic nanoparticles: Synthesis, stability and biocompatibility mediated by proteins of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces 2019;184:110517. [DOI: 10.1016/j.colsurfb.2019.110517] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
213 Achilli E, Siri M, Flores C, Kikot P, Flor S, Martinefski M, Lucangioli S, Alonso SDV, Grasselli M. Radiolysis effect of the high proportion of ethanol in the preparation of albumin nanoparticle. Radiation Physics and Chemistry 2019;165:108387. [DOI: 10.1016/j.radphyschem.2019.108387] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
214 Han HH, Sedgwick AC, Shang Y, Li N, Liu T, Li BH, Yu K, Zang Y, Brewster JT 2nd, Odyniec ML, Weber M, Bull SD, Li J, Sessler JL, James TD, He XP, Tian H. Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chem Sci 2019;11:1107-13. [PMID: 34084367 DOI: 10.1039/c9sc03961a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
215 Sohrabi MJ, Dehpour AR, Attar F, Hasan A, Mohammad-Sadeghi N, Meratan AA, Aziz FM, Salihi A, Shekha MS, Akhtari K, Shahpasand K, Hojjati SMM, Sharifi M, Saboury AA, Rezayat SM, Mousavi SE, Falahati M. Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. Int J Pharm 2019;572:118824. [PMID: 31715345 DOI: 10.1016/j.ijpharm.2019.118824] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
216 Sahu DP, Jammalamadaka SN. Detection of bovine serum albumin using hybrid TiO2 + graphene oxide based Bio - resistive random access memory device. Sci Rep 2019;9:16141. [PMID: 31695093 DOI: 10.1038/s41598-019-52522-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
217 Wang X, Lu P, Zhu L, Qin L, Zhu Y, Yan G, Duan S, Guo Y. Anti-CD133 Antibody-Targeted Therapeutic Immunomagnetic Albumin Microbeads Loaded with Vincristine-Assisted to Enhance Anti-Glioblastoma Treatment. Mol Pharm 2019;16:4582-93. [PMID: 31573817 DOI: 10.1021/acs.molpharmaceut.9b00704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
218 Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal 2019;120:109191. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Cited by in Crossref: 93] [Cited by in F6Publishing: 51] [Article Influence: 23.3] [Reference Citation Analysis]
219 Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019;10:1264. [PMID: 31708785 DOI: 10.3389/fphar.2019.01264] [Cited by in Crossref: 90] [Cited by in F6Publishing: 93] [Article Influence: 22.5] [Reference Citation Analysis]
220 Wang P, Yang W, Shen S, Wu C, Wen L, Cheng Q, Zhang B, Wang X. Differential Diagnosis and Precision Therapy of Two Typical Malignant Cutaneous Tumors Leveraging Their Tumor Microenvironment: A Photomedicine Strategy. ACS Nano 2019;13:11168-80. [PMID: 31585038 DOI: 10.1021/acsnano.9b04070] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
221 Huang J, Wu B, Zhou Z, Hu S, Xu H, Piao Y, Zheng H, Tang J, Liu X, Shen Y. Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102058. [DOI: 10.1016/j.nano.2019.102058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
222 Khramtsov P, Barkina I, Kropaneva M, Bochkova M, Timganova V, Nechaev A, Byzov I, Zamorina S, Yermakov A, Rayev M. Magnetic Nanoclusters Coated with Albumin, Casein, and Gelatin: Size Tuning, Relaxivity, Stability, Protein Corona, and Application in Nuclear Magnetic Resonance Immunoassay. Nanomaterials (Basel) 2019;9:E1345. [PMID: 31546937 DOI: 10.3390/nano9091345] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
223 Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv 2019;5:eaaw0672. [PMID: 31548981 DOI: 10.1126/sciadv.aaw0672] [Cited by in Crossref: 103] [Cited by in F6Publishing: 109] [Article Influence: 25.8] [Reference Citation Analysis]
224 Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019;311-312:125-37. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 11.0] [Reference Citation Analysis]
225 Yu M, Duan X, Cai Y, Zhang F, Jiang S, Han S, Shen J, Shuai X. Multifunctional Nanoregulator Reshapes Immune Microenvironment and Enhances Immune Memory for Tumor Immunotherapy. Adv Sci (Weinh) 2019;6:1900037. [PMID: 31453054 DOI: 10.1002/advs.201900037] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 15.3] [Reference Citation Analysis]
226 Tu Y, Yu Y, Zhou Z, Xie S, Yao B, Guan S, Situ B, Liu Y, Kwok RTK, Lam JWY, Chen S, Huang X, Zeng Z, Tang BZ. Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AIEgens. ACS Appl Mater Interfaces 2019;11:29619-29. [PMID: 31340641 DOI: 10.1021/acsami.9b10359] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
227 Xiao YF, An FF, Chen JX, Yu J, Tao WW, Yu Z, Ting R, Lee CS, Zhang XH. The Nanoassembly of an Intrinsically Cytotoxic Near-Infrared Dye for Multifunctionally Synergistic Theranostics. Small 2019;15:e1903121. [PMID: 31379108 DOI: 10.1002/smll.201903121] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
228 Hu M, Wang K, Shang W, Han Z, Jiang H, Fang C, Tian J. Boosting Postsurgical Outcomes of Orthotopic Hepatocellular Carcinoma via an EpCAM‐Targeting Theranostic Nanoparticle. Part Part Syst Charact 2019;36:1900085. [DOI: 10.1002/ppsc.201900085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
229 Ghilan A, Chiriac AP, Nita LE. Magnetic composites based on bovine serum albumin and poly(aspartic acid). Polym Eng Sci 2019;59:1409-1415. [DOI: 10.1002/pen.25125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
230 Li W, Lin J, Wang T, Huang P. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Curr Med Chem 2019;26:1406-22. [PMID: 29932026 DOI: 10.2174/0929867325666180622121801] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
231 Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019;14:581-94. [PMID: 32104485 DOI: 10.1016/j.ajps.2019.04.005] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 20.5] [Reference Citation Analysis]
232 Wang S, Hu F, Pan Y, Ng LG, Liu B. Bright AIEgen–Protein Hybrid Nanocomposite for Deep and High‐Resolution In Vivo Two‐Photon Brain Imaging. Adv Funct Mater 2019;29:1902717. [DOI: 10.1002/adfm.201902717] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
233 Saha A, Pradhan N, Chatterjee S, Singh RK, Trivedi V, Bhattacharyya A, Manna D. Fatty-Amine-Conjugated Cationic Bovine Serum Albumin Nanoparticles for Target-Specific Hydrophobic Drug Delivery. ACS Appl Nano Mater 2019;2:3671-83. [DOI: 10.1021/acsanm.9b00607] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
234 Díaz-Saldívar P, Huidobro-Toro JP. ATP-loaded biomimetic nanoparticles as controlled release system for extracellular drugs in cancer applications. Int J Nanomedicine 2019;14:2433-47. [PMID: 31040666 DOI: 10.2147/IJN.S192925] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
235 Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. CTMC 2019;19:74-97. [DOI: 10.2174/1568026619666190125144621] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
236 Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019;13:19. [PMID: 30891095 DOI: 10.1186/s13036-018-0130-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
237 Karaca N, Ünlüer ÖB. Albumin Based Nanoparticles for Detection of Pancreatic Cancer Cells. Protein Pept Lett 2019;26:271-80. [PMID: 30659529 DOI: 10.2174/0929866526666190119121434] [Reference Citation Analysis]
238 Chen CC, Li JJ, Guo NH, Chang DY, Wang CY, Chen JT, Lin WJ, Chi KH, Lee YJ, Liu RS, Chen CL, Wang HE. Evaluation of the Biological Behavior of a Gold Nanocore-Encapsulated Human Serum Albumin Nanoparticle (Au@HSANP) in a CT-26 Tumor/Ascites Mouse Model after Intravenous/Intraperitoneal Administration. Int J Mol Sci 2019;20:E217. [PMID: 30626093 DOI: 10.3390/ijms20010217] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
239 Giang Phan VH, Duong HTT, Thambi T, Nguyen TL, Turabee MH, Yin Y, Kim SH, Kim J, Jeong JH, Lee DS. Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials 2019;195:100-10. [PMID: 30623788 DOI: 10.1016/j.biomaterials.2018.12.034] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
240 Stevanović M. Biomedical Applications of Nanostructured Polymeric Materials. Nanostructured Polymer Composites for Biomedical Applications 2019. [DOI: 10.1016/b978-0-12-816771-7.00001-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
241 Zhao R, Jia T, Shi H, Huang C. A versatile probe for serum albumin and its application for monitoring wounds in live zebrafish. J Mater Chem B 2019;7:2782-9. [DOI: 10.1039/c9tb00219g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
242 Bharathala S, Sharma P. Biomedical Applications of Nanoparticles. Nanotechnology in Modern Animal Biotechnology 2019. [DOI: 10.1016/b978-0-12-818823-1.00008-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
243 Li K, Dong W, Liu Q, Lv G, Xie M, Sun X, Qiu L, Lin J. A biotin receptor-targeted silicon(IV) phthalocyanine for in vivo tumor imaging and photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2019;190:1-7. [DOI: 10.1016/j.jphotobiol.2018.09.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
244 Yang W, Shi X, Shi Y, Yao D, Chen S, Zhou X, Zhang B. Beyond the Roles in Biomimetic Chemistry: An Insight into the Intrinsic Catalytic Activity of an Enzyme for Tumor-Selective Phototheranostics. ACS Nano 2018;12:12169-80. [PMID: 30418734 DOI: 10.1021/acsnano.8b05797] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
245 Xiao B, Zhou X, Xu H, Wu B, Hu D, Hu H, Pu K, Zhou Z, Liu X, Tang J, Shen Y. Integration of Polymerization and Biomineralization as a Strategy to Facilely Synthesize Nanotheranostic Agents. ACS Nano 2018;12:12682-91. [PMID: 30507161 DOI: 10.1021/acsnano.8b07584] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
246 Ostroverkhov P, Semkina A, Naumenko V, Plotnikova E, Yakubovskaya R, Vodopyanov S, Abakumov A, Majouga A, Grin M, Chekhonin V, Abakumov M. HSA-Coated Magnetic Nanoparticles for MRI-Guided Photodynamic Cancer Therapy. Pharmaceutics 2018;10:E284. [PMID: 30562981 DOI: 10.3390/pharmaceutics10040284] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
247 Lee S, Lee C, Park S, Lim K, Kim SS, Kim JO, Lee ES, Oh KT, Choi H, Youn YS. Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. International Journal of Pharmaceutics 2018;553:363-74. [DOI: 10.1016/j.ijpharm.2018.10.063] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
248 Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg 2018;5:35. [PMID: 30499047 DOI: 10.1186/s40580-018-0168-8] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
249 Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2019;7:357-67. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
250 Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chemical Letters 2018;29:1601-8. [DOI: 10.1016/j.cclet.2018.08.007] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 16.4] [Reference Citation Analysis]
251 Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. Nanomaterials (Basel) 2018;8:E846. [PMID: 30336593 DOI: 10.3390/nano8100846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
252 Najafi S, Amani S, Shahlaei M. Rapid determination of the anti-cancer agent Gemcitabine in biological samples by fluorescence sensor based on Au-doped CdTe. Journal of Molecular Liquids 2018;266:514-21. [DOI: 10.1016/j.molliq.2018.06.105] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
253 Yan D, Long J, Liu J, Cao Y. The toxicity of ZnO nanomaterials to HepG2 cells: the influence of size and shape of particles: Toxicity of ZnO nanomaterials to HepG2 cells. J Appl Toxicol 2019;39:231-40. [DOI: 10.1002/jat.3712] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
254 Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. Journal of Controlled Release 2018;283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
255 Wang Z, Chi H, Wang X, Li W, Li Z, Li J, Fu Y, Lu B, Xia Z, Qian J, Liu L. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection. J Int Med Res 2018;46:2875-2882. [DOI: 10.1177/0300060518778415] [Reference Citation Analysis]
256 Wang H, Zhou L, Xie K, Wu J, Song P, Xie H, Zhou L, Liu J, Xu X, Shen Y, Zheng S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 2018;8:3949-63. [PMID: 30083272 DOI: 10.7150/thno.26161] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 9.0] [Reference Citation Analysis]
257 Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018;47:3574-620. [PMID: 29479622 DOI: 10.1039/c7cs00877e] [Cited by in Crossref: 256] [Cited by in F6Publishing: 262] [Article Influence: 51.2] [Reference Citation Analysis]
258 Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018;16:E179. [PMID: 29882898 DOI: 10.3390/md16060179] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
259 Xiao Y, An FF, Chen J, Xiong S, Zhang XH. The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. J Mater Chem B 2018;6:3692-702. [PMID: 32254832 DOI: 10.1039/c8tb00427g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
260 Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomed Nanobiotechnol 2019;11. [DOI: 10.1002/wnan.1527] [Cited by in Crossref: 161] [Cited by in F6Publishing: 170] [Article Influence: 32.2] [Reference Citation Analysis]
261 Xia Q, Chen Z, Yu Z, Wang L, Qu J, Liu R. Aggregation-Induced Emission-Active Near-Infrared Fluorescent Organic Nanoparticles for Noninvasive Long-Term Monitoring of Tumor Growth. ACS Appl Mater Interfaces 2018;10:17081-8. [DOI: 10.1021/acsami.8b03861] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
262 Matos MJ. Learning from nature: the role of albumin in drug delivery. Future Medicinal Chemistry 2018;10:983-5. [DOI: 10.4155/fmc-2018-0053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
263 Gou Y, Miao D, Zhou M, Wang L, Zhou H, Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front Pharmacol 2018;9:421. [PMID: 29755355 DOI: 10.3389/fphar.2018.00421] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 10.2] [Reference Citation Analysis]
264 Chen J, Liu L, Motevalli SM, Wu X, Yang X, Li X, Han L, Magrini A, Guo W, Chang J, Bottini M, Liang X. Light-Triggered Retention and Cascaded Therapy of Albumin-Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Adv Funct Mater 2018;28:1707291. [DOI: 10.1002/adfm.201707291] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 10.6] [Reference Citation Analysis]
265 Suresh PK. Tumor Heterogeneity: An Important Determinant for Efficacy and Safety in Nanoparticle Anticancer Gene Therapy. Trends Biotechnol 2018;36:476-7. [PMID: 29477234 DOI: 10.1016/j.tibtech.2018.02.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
266 Zhang X, Zong W, Cheng W, Han X. Codelivery of doxorubicin and sodium tanshinone IIA sulfonate using multicompartmentalized vesosomes to enhance synergism and prevent doxorubicin-induced cardiomyocyte apoptosis. J Mater Chem B 2018;6:5243-7. [DOI: 10.1039/c8tb01136b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
267 Shi X, Bai S, Yang C, Ma X, Hou M, Chen J, Xue P, Li CM, Kang Y, Xu Z. Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. J Mater Chem B 2018;6:5549-61. [DOI: 10.1039/c8tb01384e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]