BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Golla K, Bhaskar C, Ahmed F, Kondapi AK. A target-specific oral formulation of Doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J Cancer 2013;4:644-52. [PMID: 24155776 DOI: 10.7150/jca.7093] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Aljabali AA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, El-Tanani M, Tambuwala MM. Protein-based nanomaterials: a new tool for targeted drug delivery. Ther Deliv 2022. [PMID: 35924586 DOI: 10.4155/tde-2021-0091] [Reference Citation Analysis]
2 Racles C, Zaltariov M, Peptanariu D, Vasiliu T, Cazacu M. Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters. Nanomaterials 2022;12:1823. [DOI: 10.3390/nano12111823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int 2021;2021:9322282. [PMID: 34746313 DOI: 10.1155/2021/9322282] [Reference Citation Analysis]
4 Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA Jr. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021;19:354. [PMID: 34717658 DOI: 10.1186/s12951-021-01100-2] [Reference Citation Analysis]
5 Sunnam LBK, Kondapi AK. Topoisomerase II β Gene Specific siRNA Delivery by Nanoparticles Prepared with c-ter Apotransferrin and its Effect on HIV-1 Replication. Mol Biotechnol 2021;63:732-45. [PMID: 33993458 DOI: 10.1007/s12033-021-00334-7] [Reference Citation Analysis]
6 Tavakoli N, Divsalar A, Haertlé T, Sawyer L, Saboury AA, Muronetz V. Milk protein-based nanodelivery systems for the cancer treatment. J Nanostruct Chem 2021;11:483-500. [DOI: 10.1007/s40097-021-00399-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh S, Singh P, Guleria A, Saha S, Saraf SA. Fabrication of Imatinib Mesylate-Loaded Lactoferrin-Modified PEGylated Liquid Crystalline Nanoparticles for Mitochondrial-Dependent Apoptosis in Hepatocellular Carcinoma. Mol Pharm 2021;18:1102-20. [PMID: 33356314 DOI: 10.1021/acs.molpharmaceut.0c01024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
8 Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv 2020;17:1345-59. [PMID: 32602795 DOI: 10.1080/17425247.2020.1789585] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kondapi AK. Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond) 2020;15:2071-83. [PMID: 32779524 DOI: 10.2217/nnm-2020-0090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Sabra S, Agwa MM. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int J Biol Macromol 2020;164:1046-60. [PMID: 32707283 DOI: 10.1016/j.ijbiomac.2020.07.167] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
11 Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747-71. [DOI: 10.1039/c9tb02871d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Elsayed MM, Mostafa ME, Alaaeldin E, Sarhan HA, Shaykoon MS, Allam S, Ahmed AR, Elsadek BE. Design And Characterisation Of Novel Sorafenib-Loaded Carbon Nanotubes With Distinct Tumour-Suppressive Activity In Hepatocellular Carcinoma. Int J Nanomedicine 2019;14:8445-67. [PMID: 31754301 DOI: 10.2147/IJN.S223920] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
13 Abdelmoneem MA, Elnaggar MA, Hammady RS, Kamel SM, Helmy MW, Abdulkader MA, Zaky A, Fang J, Elkhodairy KA, Elzoghby AO. Dual-Targeted Lactoferrin Shell-Oily Core Nanocapsules for Synergistic Targeted/Herbal Therapy of Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2019;11:26731-44. [DOI: 10.1021/acsami.9b10164] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
14 Mo'men YS, Hussein RM, Kandeil MA. Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol 2019;33:e22305. [PMID: 30779474 DOI: 10.1002/jbt.22305] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
15 Li H, Yang H, Li P, Wang Y, Huang G, Xing L, Wang J, Zheng N. Effect of Heat Treatment on the Antitumor Activity of Lactoferrin in Human Colon Tumor (HT29) Model. J Agric Food Chem 2019;67:140-7. [DOI: 10.1021/acs.jafc.8b05131] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
16 Madugulla L, Ravula AR, Kondapi AK, Yenugu S. Evaluation of the reproductive toxicity of antiretroviral drug loaded lactoferrin nanoparticles. Syst Biol Reprod Med 2019;65:205-13. [PMID: 30260720 DOI: 10.1080/19396368.2018.1519047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Anwar DM, Khattab SN, Helmy MW, Kamal MK, Bekhit AA, Elkhodairy KA, Elzoghby AO. Lactobionic/Folate Dual-Targeted Amphiphilic Maltodextrin-Based Micelles for Targeted Codelivery of Sulfasalazine and Resveratrol to Hepatocellular Carcinoma. Bioconjug Chem 2018;29:3026-41. [PMID: 30110148 DOI: 10.1021/acs.bioconjchem.8b00428] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
18 Ahmed F, Kumari S, Kondapi AK. Evaluation of Antiproliferative Activity, Safety and Biodistribution of Oxaliplatin and 5-Fluorouracil Loaded Lactoferrin Nanoparticles for the Management of Colon Adenocarcinoma: an In Vitro and an In Vivo Study. Pharm Res 2018;35. [DOI: 10.1007/s11095-018-2457-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
19 Sabra SA, Elzoghby AO, Sheweita SA, Haroun M, Helmy MW, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Rohani S. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. European Journal of Pharmaceutics and Biopharmaceutics 2018;128:156-69. [DOI: 10.1016/j.ejpb.2018.04.023] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 15.0] [Reference Citation Analysis]
20 Lin CY, Shieh MJ. Near-Infrared Fluorescent Dye-Decorated Nanocages to Form Grenade-like Nanoparticles with Dual Control Release for Photothermal Theranostics and Chemotherapy. Bioconjug Chem 2018;29:1384-98. [PMID: 29505243 DOI: 10.1021/acs.bioconjchem.8b00088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kumari S, Kondapi AK. Receptor-mediated targeted delivery of DNA using Lactoferrin nanoparticles. International Journal of Biological Macromolecules 2018;108:401-7. [DOI: 10.1016/j.ijbiomac.2017.11.160] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
22 Azizi M, Ghourchian H, Yazdian F, Dashtestani F, AlizadehZeinabad H. Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS One 2017;12:e0188639. [PMID: 29186208 DOI: 10.1371/journal.pone.0188639] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 8.6] [Reference Citation Analysis]
23 Ramzy L, Nasr M, Metwally AA, Awad GA. Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. European Journal of Pharmaceutical Sciences 2017;104:273-92. [DOI: 10.1016/j.ejps.2017.04.005] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
24 Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, Mastrocola R, Castellano I, Berta L, Cavalli R, Catalano MG. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer 2017;24:275-86. [PMID: 28487350 DOI: 10.1530/ERC-17-0045] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
25 Elsadek B, Mansour A, Saleem T, Warnecke A, Kratz F. The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Digestive and Liver Disease 2017;49:213-22. [DOI: 10.1016/j.dld.2016.10.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
26 Xue W, Luo L, Li Y, Yin T, Bian K, Zhu R, Gao D. Fabrication of gold nanocages and nanoshells using lanreotide acetate and a comparison study of their photothermal antitumor therapy. J Mater Chem B 2017;5:5641-7. [DOI: 10.1039/c7tb01146f] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
27 Deshmukh K, Tanwar YS, Sharma S, Shende P, Cavalli R. Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomedicine & Pharmacotherapy 2016;84:485-94. [DOI: 10.1016/j.biopha.2016.09.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
28 Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016;11:5645-69. [PMID: 27920520 DOI: 10.2147/IJN.S115727] [Cited by in Crossref: 67] [Cited by in F6Publishing: 25] [Article Influence: 11.2] [Reference Citation Analysis]
29 Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L, Fortunati N, Cavalli R, Catalano MG. Doxorubicin-Loaded Nanobubbles Combined with Extracorporeal Shock Waves: Basis for a New Drug Delivery Tool in Anaplastic Thyroid Cancer. Thyroid 2016;26:705-16. [DOI: 10.1089/thy.2015.0342] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
30 Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochemistry International 2016;95:37-45. [DOI: 10.1016/j.neuint.2016.01.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
31 Hu M, Shen Y, Zhang L, Qiu L. Polymersomes via Self-Assembly of Amphiphilic β-Cyclodextrin-Centered Triarm Star Polymers for Enhanced Oral Bioavailability of Water-Soluble Chemotherapeutics. Biomacromolecules 2016;17:1026-39. [DOI: 10.1021/acs.biomac.5b01676] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
32 Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:579-601. [PMID: 26800431 DOI: 10.1002/wnan.1384] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 13.0] [Reference Citation Analysis]
33 Szwed M, Kania KD, Jozwiak Z. Assessment of pro-apoptotic activity of doxorubicin-transferrin conjugate in cells derived from human solid tumors. Int J Biochem Cell Biol 2016;70:57-67. [PMID: 26520467 DOI: 10.1016/j.biocel.2015.10.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
34 Kumar P, Lakshmi YS, C B, Golla K, Kondapi AK. Improved Safety, Bioavailability and Pharmacokinetics of Zidovudine through Lactoferrin Nanoparticles during Oral Administration in Rats. PLoS One 2015;10:e0140399. [PMID: 26461917 DOI: 10.1371/journal.pone.0140399] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
35 Taguchi K, Yamasaki K, Seo H, Otagiri M. Potential Use of Biological Proteins for Liver Failure Therapy. Pharmaceutics 2015;7:255-74. [PMID: 26404356 DOI: 10.3390/pharmaceutics7030255] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
36 Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond). 2014;9:2187-2202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
37 Du W, Fan Y, He B, Zheng N, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. Bionano Interactions of MCF-7 Breast Tumor Cells with a Transferrin Receptor Targeted Nanoparticle. Mol Pharmaceutics 2015;12:1467-76. [DOI: 10.1021/mp500796d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
38 Araújo F, Shrestha N, Granja PL, Hirvonen J, Santos HA, Sarmento B. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug Metab Toxicol 2015;11:381-93. [PMID: 25495133 DOI: 10.1517/17425255.2015.992781] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
39 Yan JJ, Liao JZ, Lin JS, He XX. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol. 2015;36:55-67. [PMID: 25424700 DOI: 10.1007/s13277-014-2855-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
40 Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. Biochemistry Moscow 2014;79:928-46. [DOI: 10.1134/s0006297914090090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
41 Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014;2014:180549. [PMID: 24772414 DOI: 10.1155/2014/180549] [Cited by in Crossref: 286] [Cited by in F6Publishing: 230] [Article Influence: 35.8] [Reference Citation Analysis]
42 Lam P, Gambari R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release 2014;178:25-45. [DOI: 10.1016/j.jconrel.2013.12.028] [Cited by in Crossref: 114] [Cited by in F6Publishing: 84] [Article Influence: 14.3] [Reference Citation Analysis]