BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics. Ther Deliv 2013;4:369-94. [PMID: 23442082 DOI: 10.4155/tde.13.6] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS, Raza F. Exploration of Site-Specific Drug Targeting—A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. Journal of Oncology 2022;2022:1-26. [DOI: 10.1155/2022/9396760] [Reference Citation Analysis]
2 Ibezim A, Onuku R, Ottih C, Ezeonu I, Onoabedje E, Ramanathan K, Nwodo N. New sulphonamide-peptide hybrid molecules as potential PBP 2a ligands and methicillin resistant Staphylococcus aureus actives. J Biomol Struct Dyn 2022;:1-11. [PMID: 35975581 DOI: 10.1080/07391102.2022.2111359] [Reference Citation Analysis]
3 Malekzadeh R, Babaye Abdollahi B, Ghorbani M, Pirayesh Islamian J, Mortezazadeh T. Trastuzumab conjugated PEG – Fe 3 O 4 @Au nanoparticle as an MRI biocompatible nano-contrast agent. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2058944] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Phongpradist R, Thongchai W, Thongkorn K, Lekawanvijit S, Chittasupho C. Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions. Polymers 2022;14:443. [DOI: 10.3390/polym14030443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Prajapati B, Paliwal H, Patel J. Pharmacokinetics of Nanoparticle Systems for Pulmonary Delivery. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems 2022. [DOI: 10.1007/978-3-030-83395-4_19] [Reference Citation Analysis]
6 Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int J Pharm 2021;610:121226. [PMID: 34710540 DOI: 10.1016/j.ijpharm.2021.121226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
7 Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021;13:2039. [PMID: 34959321 DOI: 10.3390/pharmaceutics13122039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
8 Gulati S, Kumar S, Mongia A, Diwan A, Singh P. Functionalized Carbon Nanotubes ( FCNTs ) as Novel Drug Delivery Systems: Emergent Perspectives from Applications. In: Mallakpour S, Hussain CM, editors. Environmental Applications of Carbon Nanomaterials‐Based Devices. Wiley; 2021. pp. 283-312. [DOI: 10.1002/9783527830978.ch12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. European Polymer Journal 2021;158:110683. [DOI: 10.1016/j.eurpolymj.2021.110683] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 29.0] [Reference Citation Analysis]
10 Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, Mukherjee A, Chatterji U, Roy P. Lactoferrin-tethered betulinic acid nanoparticles promote rapid delivery and cell death in triple negative breast and laryngeal cancer cells. Artif Cells Nanomed Biotechnol 2020;48:1362-71. [PMID: 33284038 DOI: 10.1080/21691401.2020.1850465] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
11 Uma Maheswari P, Muthappa R, Bindhya KP, Meera Sheriffa Begum K. Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. Journal of Drug Delivery Science and Technology 2021;61:102105. [DOI: 10.1016/j.jddst.2020.102105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
12 Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discovery Today 2020;25:1718-26. [DOI: 10.1016/j.drudis.2020.06.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
13 Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020;15:3803-26. [PMID: 32547029 DOI: 10.2147/IJN.S242516] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
14 Gadekar A, Bhowmick S, Pandit A. A Glycotherapeutic Approach to Functionalize Biomaterials‐Based Systems. Adv Funct Mater 2020;30:1910031. [DOI: 10.1002/adfm.201910031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Ciobanasu C, Kubitscheck U. Cell‐Penetrating Peptides Targeting and Distorting Biological Membranes. In: Wandelt K, editor. Surface and Interface Science. Wiley; 2020. pp. 441-69. [DOI: 10.1002/9783527680597.ch55] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Pan J, Attia SA, Filipczak N, Torchilin VP. Dendrimers for drug delivery purposes. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00010-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019;9:415. [PMID: 31696020 DOI: 10.1007/s13205-019-1940-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
18 Pinilla AM, Blach D, Mendez SC, Ortega FM. AOT direct and reverse micelles as a reaction media for anisotropic silver nanoparticles functionalized with folic acid as a photothermal agent on HeLa cells. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-0894-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Beldar VK, Uttekar PS, Patil AR, Sable PN, Department of Pharmaceutics, PES’s Modern College of Pharmacy, Sector no. 21, Yamunanagar, Nigdi, Pune - 411 044, Maharashtra, India. ASSESSMENT OF CANCER TARGETING POTENTIAL OF DOXORUBICIN CONJUGATED WITH SURFACE FUNCTIONALIZED MULTI-WALLED CARBON NANOTUBES. IND DRU 2019;56:56-70. [DOI: 10.53879/id.56.01.11264] [Reference Citation Analysis]
20 Vasile C. Polymeric Nanomaterials. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00001-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
21 Abdelhamid AS, Zayed DG, Helmy MW, Ebrahim SM, Bahey-el-din M, Zein-el-dein EA, El-gizawy SA, Elzoghby AO. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine 2018;13:2637-56. [DOI: 10.2217/nnm-2018-0196] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]
22 Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv 2018;25:517-32. [PMID: 29433357 DOI: 10.1080/10717544.2018.1435747] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 16.0] [Reference Citation Analysis]
23 El-lakany SA, Elgindy NA, Helmy MW, Abu-serie MM, Elzoghby AO. Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opinion on Drug Delivery 2018;15:835-50. [DOI: 10.1080/17425247.2018.1505858] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
24 Ghaffari M, Dehghan G, Abedi-Gaballu F, Kashanian S, Baradaran B, Ezzati Nazhad Dolatabadi J, Losic D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur J Pharm Sci 2018;122:311-30. [PMID: 30003954 DOI: 10.1016/j.ejps.2018.07.020] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
25 Zhou Y, Unno K, Hyjek E, Liu H, Zimmerman T, Karmakar S, Putt KS, Shen J, Low PS, Wickrema A. Expression of functional folate receptors in multiple myeloma. Leuk Lymphoma 2018;59:2982-9. [PMID: 29616859 DOI: 10.1080/10428194.2018.1453066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
26 Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018;10:E34. [PMID: 29543755 DOI: 10.3390/pharmaceutics10010034] [Cited by in Crossref: 158] [Cited by in F6Publishing: 161] [Article Influence: 39.5] [Reference Citation Analysis]
27 Ghanghoria R, Kesharwani P, Tekade RK, Jain NK. Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. Journal of Controlled Release 2018;269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
28 Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. Journal of Drug Targeting 2018;26:731-52. [DOI: 10.1080/1061186x.2017.1408115] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 9.4] [Reference Citation Analysis]
29 Minnelli C, Cianfruglia L, Laudadio E, Galeazzi R, Pisani M, Crucianelli E, Bizzaro D, Armeni T, Mobbili G. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2018;26:242-51. [PMID: 28795851 DOI: 10.1080/1061186X.2017.1365873] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
30 Kumari S, Ahsan SM, Kumar JM, Kondapi AK, Rao NM. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep 2017;7:6602. [PMID: 28747713 DOI: 10.1038/s41598-017-06888-4] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 15.6] [Reference Citation Analysis]
31 Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017;18:1671-82. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
32 Yuan Y, Guo B, Hao L, Liu N, Lin Y, Guo W, Li X, Gu B. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B Biointerfaces 2017;159:349-59. [PMID: 28806666 DOI: 10.1016/j.colsurfb.2017.07.030] [Cited by in Crossref: 100] [Cited by in F6Publishing: 105] [Article Influence: 20.0] [Reference Citation Analysis]
33 Shaikh MH, Clarke DTW, Johnson NW, McMillan NAJ. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol 2017;68:9-19. [PMID: 28438299 DOI: 10.1016/j.oraloncology.2017.02.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
34 Raja SM, Desale SS, Mohapatra B, Luan H, Soni K, Zhang J, Storck MA, Feng D, Bielecki TA, Band V, Cohen SM, Bronich TK, Band H. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition. Oncotarget 2016;7:10522-35. [PMID: 26859680 DOI: 10.18632/oncotarget.7231] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
35 Lyalina T, Zubareva A, Varlamov V, Svirshchevskaya E. Cross-presentation of lactoferrin encapsulated into chitosan-based nanoparticles. Nanobiomedicine (Rij) 2016;3:1849543516667355. [PMID: 29942386 DOI: 10.1177/1849543516667355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
36 Brazzale C, Canaparo R, Racca L, Foglietta F, Durando G, Fantozzi R, Caliceti P, Salmaso S, Serpe L. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine (Lond) 2016;11:3053-70. [PMID: 27627904 DOI: 10.2217/nnm-2016-0293] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 8.2] [Reference Citation Analysis]
37 Han S, Kwon T, Um JE, Haam S, Kim WJ. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform. Adv Healthc Mater 2016;5:1147-56. [PMID: 27029602 DOI: 10.1002/adhm.201600015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
38 Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. In: Lu Z, Sakuma S, editors. Nanomaterials in Pharmacology. New York: Springer; 2016. pp. 457-82. [DOI: 10.1007/978-1-4939-3121-7_23] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
39 Mehra NK, Jain K, Jain NK. Multifunctional carbon nanotubes in cancer therapy and imaging. Nanobiomaterials in Medical Imaging 2016. [DOI: 10.1016/b978-0-323-41736-5.00014-5] [Reference Citation Analysis]
40 Mehra NK, Jain N. Cancer targeting propensity of folate conjugated surface engineered multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces 2015;132:17-26. [DOI: 10.1016/j.colsurfb.2015.04.056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
41 Mehra NK, Jain NK. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target 2016;24:294-308. [PMID: 26147085 DOI: 10.3109/1061186X.2015.1055571] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
42 Holm J, Bruun SW, Hansen SI. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives. Biochim Biophys Acta 2015;1854:1249-59. [PMID: 26116148 DOI: 10.1016/j.bbapap.2015.06.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
43 Wang J, Bi M, Liu H, Song N, Xie J. The protective effect of lactoferrin on ventral mesencephalon neurons against MPP + is not connected with its iron binding ability. Sci Rep 2015;5:10729. [PMID: 26035688 DOI: 10.1038/srep10729] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
44 Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 2015;20:750-9. [PMID: 25601411 DOI: 10.1016/j.drudis.2015.01.006] [Cited by in Crossref: 68] [Cited by in F6Publishing: 45] [Article Influence: 9.7] [Reference Citation Analysis]
45 Mehra NK, Jain NK. One Platform Comparison of Estrone and Folic Acid Anchored Surface Engineered MWCNTs for Doxorubicin Delivery. Mol Pharmaceutics 2015;12:630-43. [DOI: 10.1021/mp500720a] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
46 Gladdines W, Visser CC, de Boer M, Appeldoorn CC, Reijerkerk A, Rip J, Gaillard PJ. Recent Advances and Trends in the Brain Delivery of Small Molecule Based Cancer Therapies. Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies 2015. [DOI: 10.1016/b978-0-12-416603-5.00019-5] [Reference Citation Analysis]
47 Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel'in AV, Milstein S, Taneja N, O'Shea J, Shaikh S, Zhang L, van der Sluis RJ, Jung ME, Akinc A, Hutabarat R, Kuchimanchi S, Fitzgerald K, Zimmermann T, van Berkel TJ, Maier MA, Rajeev KG, Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014;136:16958-61. [PMID: 25434769 DOI: 10.1021/ja505986a] [Cited by in Crossref: 626] [Cited by in F6Publishing: 653] [Article Influence: 78.3] [Reference Citation Analysis]
48 Yan JJ, Liao JZ, Lin JS, He XX. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol. 2015;36:55-67. [PMID: 25424700 DOI: 10.1007/s13277-014-2855-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
49 Talegaonkar S, Negi LM. Nanoemulsion in Drug Targeting. In: Devarajan PV, Jain S, editors. Targeted Drug Delivery : Concepts and Design. Cham: Springer International Publishing; 2015. pp. 433-59. [DOI: 10.1007/978-3-319-11355-5_14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
50 Wang X, Li S, Shi Y, Chuan X, Li J, Zhong T, Zhang H, Dai W, He B, Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. Journal of Controlled Release 2014;193:139-53. [DOI: 10.1016/j.jconrel.2014.05.028] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 7.1] [Reference Citation Analysis]
51 Jain NK, Tare MS, Mishra V, Tripathi PK. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine 2015;11:207-18. [PMID: 25262579 DOI: 10.1016/j.nano.2014.09.006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 6.0] [Reference Citation Analysis]
52 Tay CY, Setyawati MI, Xie J, Parak WJ, Leong DT. Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. Adv Funct Mater 2014;24:5936-55. [DOI: 10.1002/adfm.201401664] [Cited by in Crossref: 182] [Cited by in F6Publishing: 182] [Article Influence: 22.8] [Reference Citation Analysis]
53 Neutsch L, Gabor F, Wirth M. Glycan-targeted drug delivery for intravesical therapy: in the footsteps of uropathogenic bacteria. Therapeutic Delivery 2014;5:537-53. [DOI: 10.4155/tde.14.25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
54 Mehra NK, Verma AK, Mishra PR, Jain NK. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 2014;35:4573-88. [PMID: 24612818 DOI: 10.1016/j.biomaterials.2014.02.022] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 6.5] [Reference Citation Analysis]
55 Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014;2014:814208. [PMID: 24672796 DOI: 10.1155/2014/814208] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
56 Shallal HM, Minn I, Banerjee SR, Lisok A, Mease RC, Pomper MG. Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjug Chem 2014;25:393-405. [PMID: 24410012 DOI: 10.1021/bc4005377] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
57 Mishra V, Jain N. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. International Journal of Pharmaceutics 2014;461:380-90. [DOI: 10.1016/j.ijpharm.2013.11.043] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 8.0] [Reference Citation Analysis]
58 Mitchell KK, Sandoval S, Cortes-Mateos MJ, Alfaro JG, Kummel AC, Trogler WC. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles. J Mater Chem B 2014;2:8017-25. [PMID: 25364507 DOI: 10.1039/C4TB01429D] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
59 Mehra NK, Mishra V, Jain N. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 2014;35:1267-83. [DOI: 10.1016/j.biomaterials.2013.10.032] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 13.4] [Reference Citation Analysis]
60 Holm J, Babol LN, Markova N, Lawaetz AJ, Hansen SI. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH. Biochim Biophys Acta 2014;1844:512-9. [PMID: 24374293 DOI: 10.1016/j.bbapap.2013.12.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
61 del Castillo T, Marales-Sanfrutos J, Santoyo-González F, Magez S, Lopez-Jaramillo FJ, Garcia-Salcedo JA. Monovinyl sulfone β-cyclodextrin. A flexible drug carrier system. ChemMedChem 2014;9:383-9. [PMID: 24339407 DOI: 10.1002/cmdc.201300385] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
62 Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery 2013;11:139-54. [DOI: 10.1517/17425247.2014.866651] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 9.2] [Reference Citation Analysis]
63 Gupta R, Mehra NK, Jain NK. Development and characterization of sulfasalazine loaded fucosylated PPI dendrimer for the treatment of cytokine-induced liver damage. Eur J Pharm Biopharm 2014;86:449-58. [PMID: 24189499 DOI: 10.1016/j.ejpb.2013.10.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
64 Durymanov MO, Slastnikova TA, Kuzmich AI, Khramtsov YV, Ulasov AV, Rosenkranz AA, Egorov SY, Sverdlov ED, Sobolev AS. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue. Biomaterials 2013;34:10209-16. [PMID: 24075405 DOI: 10.1016/j.biomaterials.2013.08.076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
65 Gupta R, Mehra NK, Jain NK. Fucosylated multiwalled carbon nanotubes for Kupffer cells targeting for the treatment of cytokine-induced liver damage. Pharm Res 2014;31:322-34. [PMID: 24043294 DOI: 10.1007/s11095-013-1162-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
66 Mclaughlin CK, Logie J, Shoichet MS. Core and Corona Modifications for the Design of Polymeric Micelle Drug-Delivery Systems. Isr J Chem 2013. [DOI: 10.1002/ijch.201300085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
67 Ali M, Afzal M, Kaushik U, Bhattacharya SM, Ahmad FJ, Dinda AK. Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. Journal of Drug Targeting 2013;22:1-13. [DOI: 10.3109/1061186x.2013.832766] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
68 Mehra NK, Jain NK. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 2013;21:745-58. [PMID: 23822734 DOI: 10.3109/1061186X.2013.813028] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.6] [Reference Citation Analysis]
69 Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. Journal of Drug Targeting 2013;21:581-92. [DOI: 10.3109/1061186x.2013.778264] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]