BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv 2012;3:1409-27. [PMID: 23323559 DOI: 10.4155/tde.12.106] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Kembaren R, Kleijn JM, Borst JW, Kamperman M, Hofman AH. Enhanced stability of complex coacervate core micelles following different core-crosslinking strategies. Soft Matter 2022. [PMID: 35363245 DOI: 10.1039/d2sm00088a] [Reference Citation Analysis]
2 Gharnas‐ghamesh H, Masoumi M, Erfani‐moghadam V. Synthesis of doxorubicin‐loaded PBMA‐b‐POEGMA micelles and assessment of its anticancer activity against breast cancer cells (4T1). J of Applied Polymer Sci. [DOI: 10.1002/app.52162] [Reference Citation Analysis]
3 Elter JK, Eichhorn J, Schacher FH. Polyether-Based Diblock Terpolymer Micelles with Pendant Anthracene Units-Light-Induced Crosslinking and Limitations Regarding Reversibility. Macromol Rapid Commun 2021;:e2100485. [PMID: 34463379 DOI: 10.1002/marc.202100485] [Reference Citation Analysis]
4 Phatake RS, Vidavsky Y, Lemcoff NG, Reany O. Oil additives demonstrate dual effects on thermal and mechanical properties of cross-linked hydroxy-DCPD thermosets. European Polymer Journal 2021;149:110364. [DOI: 10.1016/j.eurpolymj.2021.110364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
6 Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Materials Science and Engineering: C 2021;119:111626. [DOI: 10.1016/j.msec.2020.111626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
7 Kuang G, Zhang Q, He S, Wu Y, Huang Y. Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym Chem 2020;11:7078-86. [DOI: 10.1039/d0py00987c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019;266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
9 Gao J, Wang P, Wang Z, Li C, Sun S, Hu S. Self-assembly of DCPD-loaded cross-linked micelle from triblock copolymers and its pH-responsive behavior: A dissipative particle dynamics study. Chemical Engineering Science 2019;195:325-34. [DOI: 10.1016/j.ces.2018.09.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
10 Wang Y, Wang L, Guo L, Yan M, Feng L, Dong S, Hao J. Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. New J Chem 2019;43:4908-18. [DOI: 10.1039/c8nj06105j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
11 Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click‐Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019;40:1800541. [DOI: 10.1002/marc.201800541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
12 Chen Y, Chang C, Lin C, Lin L, Yeh M, Jan J. Disulfide-cross-linked PEG-block-polypeptide nanoparticles with high drug loading content as glutathione-triggered anticancer drug nanocarriers. Colloids and Surfaces B: Biointerfaces 2018;165:172-81. [DOI: 10.1016/j.colsurfb.2018.02.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
13 Garcia FP, Rippe M, Companhoni MVP, Stefanello TF, Louage B, Van Herck S, Sancey L, Coll J, De Geest BG, Vataru Nakamura C, Auzély-velty R. A versatile method for the selective core-crosslinking of hyaluronic acid nanogels via ketone-hydrazide chemistry: from chemical characterization to in vivo biodistribution. Biomater Sci 2018;6:1754-63. [DOI: 10.1039/c8bm00396c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
14 Collins J, Nadgorny M, Xiao Z, Connal LA. Doubly Dynamic Self-Healing Materials Based on Oxime Click Chemistry and Boronic Acids. Macromol Rapid Commun 2017;38:1600760. [DOI: 10.1002/marc.201600760] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 10.8] [Reference Citation Analysis]
15 Jellali R, Alexandre M, Jérôme C. Photosensitive polydimethylsiloxane networks for adjustable-patterned films. Polym Chem 2017;8:2499-508. [DOI: 10.1039/c7py00300e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
16 Zhao C, Shao L, Lu J, Zhao C, Wei Y, Liu J, Li M, Wu Y. Triple Redox Responsive Poly(Ethylene Glycol)-Polycaprolactone Polymeric Nanocarriers for Fine-Controlled Drug Release. Macromol Biosci 2017;17. [PMID: 27762492 DOI: 10.1002/mabi.201600295] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
17 Zhou W, Li C, Wang Z, Zhang W, Liu J. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3583-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
18 Wang X, Zhou X, Wang J, Cao Z, Zhang L, Tang R. Acid-Labile Copolymer Micelles Cross-Linked by a Twin Ortho Ester Cross-Linking Agent: Synthesis, Characterization, and Evaluation. Macromol Chem Phys 2016;217:2182-90. [DOI: 10.1002/macp.201600234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
19 Li Z, Ye E, David, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small 2016;12:4782-806. [DOI: 10.1002/smll.201601129] [Cited by in Crossref: 195] [Cited by in F6Publishing: 196] [Article Influence: 32.5] [Reference Citation Analysis]
20 Deng B, Ma P, Xie Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. Nanoscale 2015;7:12773-95. [PMID: 26176593 DOI: 10.1039/c5nr02878g] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 15.3] [Reference Citation Analysis]
21 Donskyi I, Achazi K, Wycisk V, Böttcher C, Adeli M. Synthesis, self-assembly, and photocrosslinking of fullerene-polyglycerol amphiphiles as nanocarriers with controlled transport properties. Chem Commun 2016;52:4373-6. [DOI: 10.1039/c5cc08369a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
22 Miller RD, Yusoff RM, Swope WC, Rice JE, Carr AC, Parker AJ, Sly J, Appel EA, Nguyen T, Piunova V. Water soluble, biodegradable amphiphilic polymeric nanoparticles and the molecular environment of hydrophobic encapsulates: Consistency between simulation and experiment. Polymer 2015;79:255-61. [DOI: 10.1016/j.polymer.2015.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
23 Shi C, Guo D, Xiao K, Wang X, Wang L, Luo J. A drug-specific nanocarrier design for efficient anticancer therapy. Nat Commun 2015;6:7449. [PMID: 26158623 DOI: 10.1038/ncomms8449] [Cited by in Crossref: 105] [Cited by in F6Publishing: 109] [Article Influence: 15.0] [Reference Citation Analysis]
24 Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 2015;210:125-33. [PMID: 25987525 DOI: 10.1016/j.jconrel.2015.05.273] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 10.1] [Reference Citation Analysis]
25 Shi Y, van Nostrum CF, Hennink WE. Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomater Sci Eng 2015;1:393-404. [DOI: 10.1021/acsbiomaterials.5b00006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
26 Deng H, Zhang Y, Wang X, Jianhuazhang, Cao Y, Liu J, Liu J, Deng L, Dong A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomater 2015;11:126-36. [PMID: 25288518 DOI: 10.1016/j.actbio.2014.09.047] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 8.3] [Reference Citation Analysis]
27 Liu J, Detrembleur C, Mornet S, Jérôme C, Duguet E. Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 2015;3:6117-47. [DOI: 10.1039/c5tb00664c] [Cited by in Crossref: 84] [Cited by in F6Publishing: 76] [Article Influence: 12.0] [Reference Citation Analysis]
28 Liu J, Debuigne A, Detrembleur C, Jérôme C. Poly(N-vinylcaprolactam): a thermoresponsive macromolecule with promising future in biomedical field. Adv Healthc Mater 2014;3:1941-68. [PMID: 25354338 DOI: 10.1002/adhm.201400371] [Cited by in Crossref: 106] [Cited by in F6Publishing: 94] [Article Influence: 13.3] [Reference Citation Analysis]
29 Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Journal of Controlled Release 2014;193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Cited by in Crossref: 75] [Cited by in F6Publishing: 83] [Article Influence: 9.4] [Reference Citation Analysis]
30 Fan W, Wang Y, Dai X, Shi L, Mckinley D, Tan C. Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery. Pharm Res 2015;32:1325-40. [DOI: 10.1007/s11095-014-1537-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
31 Shao Y, Shi C, Xu G, Guo D, Luo J. Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl Mater Interfaces 2014;6:10381-92. [PMID: 24921150 DOI: 10.1021/am501913m] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 9.4] [Reference Citation Analysis]
32 Shi C, Yuan D, Nangia S, Xu G, Lam KS, Luo J. A structure-property relationship study of the well-defined telodendrimers to improve hemocompatibility of nanocarriers for anticancer drug delivery. Langmuir 2014;30:6878-88. [PMID: 24849780 DOI: 10.1021/la5003513] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
33 Dunn AE, Dunn DJ, Macmillan A, Whan R, Stait-gardner T, Price WS, Lim M, Boyer C. Spatial and temporal control of drug release through pH and alternating magnetic field induced breakage of Schiff base bonds. Polym Chem 2014;5:3311-5. [DOI: 10.1039/c4py00150h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
34 Liu J, Detrembleur C, Hurtgen M, Debuigne A, De Pauw-gillet M, Mornet S, Duguet E, Jérôme C. Reversibly crosslinked thermo- and redox-responsive nanogels for controlled drug release. Polym Chem 2014;5:77-88. [DOI: 10.1039/c3py00839h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
35 Liu J, Detrembleur C, Grignard B, De Pauw-Gillet MC, Mornet S, Treguer-Delapierre M, Petit Y, Jérôme C, Duguet E. Gold nanorods with phase-changing polymer corona for remotely near-infrared-triggered drug release. Chem Asian J 2014;9:275-88. [PMID: 24347074 DOI: 10.1002/asia.201301010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
36 Zhu Z, Gao N, Wang H, Sukhishvili SA. Temperature-triggered on-demand drug release enabled by hydrogen-bonded multilayers of block copolymer micelles. Journal of Controlled Release 2013;171:73-80. [DOI: 10.1016/j.jconrel.2013.06.031] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Article Influence: 7.2] [Reference Citation Analysis]
37 Meng L, Huang W, Wang D, Huang X, Zhu X, Yan D. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules. 2013;14:2601-2610. [PMID: 23819825 DOI: 10.1021/bm400451v] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 11.1] [Reference Citation Analysis]