BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020;57:678-96. [PMID: 32705178 DOI: 10.3892/ijo.2020.5099] [Cited by in Crossref: 86] [Cited by in F6Publishing: 90] [Article Influence: 43.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Yeh Y, Su Y, Liao C, Huang C, Cheng Y, Jan J. Cell adhesion inhibiting peptides exhibit potent anticancer activity and modulate intestinal microbiota. Materials & Design 2022;224:111303. [DOI: 10.1016/j.matdes.2022.111303] [Reference Citation Analysis]
2 Segneanu A, Vlase G, Lukinich-gruia AT, Herea D, Grozescu I. Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants 2022;11:2261. [DOI: 10.3390/antiox11112261] [Reference Citation Analysis]
3 Velayutham M, Haridevamuthu B, Elsadek MF, Rizwana H, Juliet A, Karuppiah KM, Arockiaraj J. S-adenosylmethionine synthase-derived GR15 peptide suppresses proliferation of breast cancer cells by upregulating the caspase-mediated apoptotic pathway: In vitro and in silico analyses. Journal of King Saud University - Science 2022;34:102354. [DOI: 10.1016/j.jksus.2022.102354] [Reference Citation Analysis]
4 Velayutham M, Sarkar P, Sudhakaran G, Al-ghanim KA, Maboob S, Juliet A, Guru A, Muthupandian S, Arockiaraj J. Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of Aphanomyces invadans, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model. Molecules 2022;27:7333. [DOI: 10.3390/molecules27217333] [Reference Citation Analysis]
5 El Hauadi K, Resina L, Zanuy D, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides. Langmuir 2022. [PMID: 36229043 DOI: 10.1021/acs.langmuir.2c02010] [Reference Citation Analysis]
6 Lee JY, Park S, Han A, Hwang H, Kim H. Therapeutic potential of FLT4-targeting peptide in acute myeloid leukemia.. [DOI: 10.21203/rs.3.rs-2041166/v2] [Reference Citation Analysis]
7 Norouzi P, Mirmohammadi M, Houshdar Tehrani MH. Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022;:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Reference Citation Analysis]
8 Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. Biomaterials Advances 2022;141:213118. [DOI: 10.1016/j.bioadv.2022.213118] [Reference Citation Analysis]
9 Cruz-Gregorio A, Aranda-Rivera AK, Sciutto E, Fragoso G, Pedraza-Chaverri J. Redox state associated with antitumor and immunomodulatory peptides in cancer. Arch Biochem Biophys 2022;:109414. [PMID: 36174750 DOI: 10.1016/j.abb.2022.109414] [Reference Citation Analysis]
10 Kovalev IS, Zyryanov GV, Santra S, Majee A, Varaksin MV, Charushin VN. Folic Acid Antimetabolites (Antifolates): A Brief Review on Synthetic Strategies and Application Opportunities. Molecules 2022;27:6229. [DOI: 10.3390/molecules27196229] [Reference Citation Analysis]
11 Akintayo DC, Manne SR, de la Torre BG, Li Y, Albericio F. A Practical Peptide Synthesis Workflow Using Amino-Li-Resin. MPs 2022;5:72. [DOI: 10.3390/mps5050072] [Reference Citation Analysis]
12 De Cena GL, Scavassa BV, Conceição K. In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals 2022;15:1141. [DOI: 10.3390/ph15091141] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge. IJMS 2022;23:10558. [DOI: 10.3390/ijms231810558] [Reference Citation Analysis]
14 Liu J, Li M, Chen X. AntiMF: A deep learning framework for predicting anticancer peptides based on multi-view feature extraction. Methods 2022;207:38-43. [PMID: 36100141 DOI: 10.1016/j.ymeth.2022.07.017] [Reference Citation Analysis]
15 Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022;350:716-33. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Devi N, Singh P, Sharma R, Kumar M, Pandey SK, Sharma RK, Wangoo N. A lysine-rich cell penetrating peptide engineered multifunctional gold nanoparticle-based drug delivery system with enhanced cellular penetration and stability. J Mater Sci. [DOI: 10.1007/s10853-022-07681-z] [Reference Citation Analysis]
17 Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022;13:944147. [DOI: 10.3389/fphar.2022.944147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wasunan P, Maneewong C, Daengprok W, Thirabunyanon M. Bioactive Earthworm Peptides Produced by Novel Protease-Producing Bacillus velezensis PM 35 and Its Bioactivities on Liver Cancer Cell Death via Apoptosis, Antioxidant Activity, Protection Against Oxidative Stress, and Immune Cell Activation. Front Microbiol 2022;13:892945. [DOI: 10.3389/fmicb.2022.892945] [Reference Citation Analysis]
19 Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao C. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022;13:931612. [DOI: 10.3389/fimmu.2022.931612] [Reference Citation Analysis]
20 Ahmed S, Alam W, Jeandet P, Aschner M, Alsharif KF, Saso L, Khan H. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Marine Drugs 2022;20:466. [DOI: 10.3390/md20080466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022;12:21353-73. [PMID: 35975072 DOI: 10.1039/d2ra02062a] [Reference Citation Analysis]
22 Edwin Paul, P. Ganesan, V. Jaisankar. Design and Synthesis of certain Novel Peptides for Dual Selective Activity of Specific Cells. IJSRSET 2022. [DOI: 10.32628/ijsrset229432] [Reference Citation Analysis]
23 Segneanu A, Marin CN, Herea DD, Stanusoiu I, Muntean C, Grozescu I. Romanian Viscum album L.—Untargeted Low-Molecular Metabolomic Approach to Engineered Viscum–AuNPs Carrier Assembly. Plants 2022;11:1820. [DOI: 10.3390/plants11141820] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022;28:e202200811. [PMID: 35420234 DOI: 10.1002/chem.202200811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Sahna KO, Cakir B, Tunali-akbay T. Antiproliferative Activity of Whey and Casein Bioactive Peptides on Breast Cancer: An In Vitro and In Silico Study. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10436-8] [Reference Citation Analysis]
26 Bojarska J, Breza M, Remko M, Czyz M, Gajos-michniewicz A, Zimecki M, Kaczmarek K, Madura ID, Wojciechowski JM, Wolf WM. Structural and Biofunctional Insights into the Cyclo(Pro-Pro-Phe-Phe-) Scaffold from Experimental and In Silico Studies: Melanoma and Beyond. IJMS 2022;23:7173. [DOI: 10.3390/ijms23137173] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022;:1-40. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li Y, Li X, Liu Y, Yao Y, Huang G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals 2022;15:707. [DOI: 10.3390/ph15060707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022;12:e822. [PMID: 35593206 DOI: 10.1002/ctm2.822] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Klaiss-luna MC, Manrique-moreno M. Infrared Spectroscopic Study of Multi-Component Lipid Systems: A Closer Approximation to Biological Membrane Fluidity. Membranes 2022;12:534. [DOI: 10.3390/membranes12050534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Aziz AZB, Hasan MAM, Ahmad S, Mamun MA, Shin J, Hossain MR. Multi-channel CNN based anticancer peptides identification. Anal Biochem 2022;:114707. [PMID: 35568159 DOI: 10.1016/j.ab.2022.114707] [Reference Citation Analysis]
32 Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH, Lee G. Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022;14:997. [DOI: 10.3390/pharmaceutics14050997] [Reference Citation Analysis]
33 Zhu D, Fang C, Yang Z, Ren Y, Yang F, Zheng S, Jiang M, Miao X, Liu D, Chen B, Yao X, Chen Y. Tubulin-binding peptide RR-171 derived from human umbilical cord serum displays antitumor activity against hepatocellular carcinoma via inducing apoptosis and activating the NF-kappa B pathway. Cell Prolif 2022;:e13241. [PMID: 35504605 DOI: 10.1111/cpr.13241] [Reference Citation Analysis]
34 Zhang Y, Chang L, Bao H, Wu X, Liu H, Gou S, Zhang J, Ni J. Constructing New Acid-Activated Anticancer Peptide by Attaching a Desirable Anionic Binding Partner Peptide. J Drug Target 2022;:1-26. [PMID: 35502656 DOI: 10.1080/1061186X.2022.2070627] [Reference Citation Analysis]
35 Gasymov OK, Kecel-Gunduz S, Celik S, Akyuz S, Ozel AE, Agaeva G, Suleymanova LM, Agaeva U, Bakhishova M, Aliyev JA. Molecular docking of the pentapeptide derived from rice bran protein as anticancer agent inhibiting both receptor and non-receptor tyrosine kinases. J Biomol Struct Dyn 2022;:1-23. [PMID: 35477348 DOI: 10.1080/07391102.2022.2067234] [Reference Citation Analysis]
36 Abbas AR, Mahdi BS, Fadhil OY. Breast and Lung Anticancer Peptides Classification Using N-Grams and Ensemble Learning Techniques. BDCC 2022;6:40. [DOI: 10.3390/bdcc6020040] [Reference Citation Analysis]
37 Garmidolova A, Desseva I, Mihaylova D, Lante A. Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. Applied Sciences 2022;12:3766. [DOI: 10.3390/app12083766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Velayutham M, Guru A, Gatasheh MK, Hatamleh AA, Juliet A, Arockiaraj J. Molecular Docking of SA11, RF13 and DI14 Peptides from Vacuolar Protein Sorting Associated Protein 26B Against Cancer Proteins and In vitro Investigation of its Anticancer Potency in Hep-2 Cells. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10395-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Sun Y, Lin T, Cheng W, Lu I, Lin C, Chen S. Peptide-Based Drug Predictions for Cancer Therapy Using Deep Learning. Pharmaceuticals 2022;15:422. [DOI: 10.3390/ph15040422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
40 Manzoor M, Singh J, Gani A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022;373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
41 Zornic S, Lukovic B, Jevtovic A, Dimitrijevic JD, Markovic BS, Pantic J, Radosavljevic GD, Arsenijevic N. Overview of Host Defense Peptides with Promising Anti-Breast Cancer Activity. Serbian Journal of Experimental and Clinical Research 2022;0. [DOI: 10.2478/sjecr-2021-0052] [Reference Citation Analysis]
42 Łowicki D, Przybylski P. Tandem construction of biological relevant aliphatic 5-membered N-heterocycles. Eur J Med Chem 2022;235:114303. [PMID: 35344904 DOI: 10.1016/j.ejmech.2022.114303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
43 Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022;12:819563. [PMID: 35280755 DOI: 10.3389/fonc.2022.819563] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
44 Sun M, Yang S, Hu X, Zhou Y. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information. Molecules 2022;27:1544. [PMID: 35268644 DOI: 10.3390/molecules27051544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Velayutham M, Sarkar P, Rajakrishnan R, Kuppusamy P, Juliet A, Arockiaraj J. Antiproliferation of MP12 derived from a fungus, Aphanomyces invadans virulence factor, cysteine-rich trypsin inhibitor on human laryngeal epithelial cells, and in vivo zebrafish embryo model. Toxicon 2022:S0041-0101(22)00060-5. [PMID: 35217022 DOI: 10.1016/j.toxicon.2022.02.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
46 Sun Y, Lin T, Cheng W, Lu I, Chen S, Lin C. Peptide-based drug predictions for cancer therapy using deep learning.. [DOI: 10.1101/2022.02.01.478580] [Reference Citation Analysis]
47 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Landi N, Clemente A, Pedone PV, Ragucci S, Di Maro A. An Updated Review of Bioactive Peptides from Mushrooms in a Well-Defined Molecular Weight Range. Toxins 2022;14:84. [DOI: 10.3390/toxins14020084] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
49 Cegłowska M, Kwiecień P, Szubert K, Brzuzan P, Florczyk M, Edwards C, Kosakowska A, Mazur-marzec H. Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs 2022;20:93. [DOI: 10.3390/md20020093] [Reference Citation Analysis]
50 Kanwal I, Mushtaq F, Ali H, Tufail P, Jahan H, Shaheen F. First report on the synthesis and structural studies of trans-Phakellistatin 18: a rotamer of marine natural product phakellistatin 18. Nat Prod Res 2022;:1-10. [PMID: 34986732 DOI: 10.1080/14786419.2021.2023141] [Reference Citation Analysis]
51 Zhao Y, Wang H, Yin Y, Shi H, Wang D, Shu F, Wang R, Wang L. Anti-melanoma action of small molecular peptides derived from Brucea javanica(L.)Merr. globulin in vitro. Journal of Traditional Chinese Medical Sciences 2022. [DOI: 10.1016/j.jtcms.2022.01.001] [Reference Citation Analysis]
52 Comert Onder F, Ay M. Recent developments in natural bioactive peptides: Anticancer potential and structure–activity relationships. Bioactive Natural Products 2022. [DOI: 10.1016/b978-0-323-91250-1.00009-4] [Reference Citation Analysis]
53 Manrique-Moreno M, Santa-González GA, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021;41:BSR20211218C. [PMID: 34874400 DOI: 10.1042/BSR20211218C] [Reference Citation Analysis]
54 Almeida JR, Mendes B, Lancellotti M, Franchi GC, Passos Ó, Ramos MJ, Fernandes PA, Alves C, Vale N, Gomes P, da Silva SL. Lessons from a Single Amino Acid Substitution: Anticancer and Antibacterial Properties of Two Phospholipase A2-Derived Peptides. CIMB 2022;44:46-62. [DOI: 10.3390/cimb44010004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Maraming P, Daduang J, Kah JCY. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Adv 2021;12:319-25. [PMID: 35424498 DOI: 10.1039/d1ra05980g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Luo Z, Gao Y, Duan Z, Yi Y, Wang H. Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Front Bioeng Biotechnol 2021;9:782234. [PMID: 34900970 DOI: 10.3389/fbioe.2021.782234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Ahmed S, Khan H, Fakhri S, Aschner M, Cheang WS. Therapeutic potential of marine peptides in cervical and ovarian cancers. Mol Cell Biochem 2021. [PMID: 34855045 DOI: 10.1007/s11010-021-04306-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Wang J, Guo H, Xu D, Yu C, Xv R, Wu Q, Di L, Cheng H, Duan J, Zhou J, Marcon E, Ma H. Cell affinity screening combined with nanoLC-MS/MS based peptidomics for identifying cancer cell binding peptides from Bufo Bufo gargarizans. J Pharm Biomed Anal 2021;206:114354. [PMID: 34509663 DOI: 10.1016/j.jpba.2021.114354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2021;148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
60 Segneanu A, Marin CN, Ghirlea IO, Feier CVI, Muntean C, Grozescu I. Artemisia annua Growing Wild in Romania—A Metabolite Profile Approach to Target a Drug Delivery System Based on Magnetite Nanoparticles. Plants 2021;10:2245. [DOI: 10.3390/plants10112245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Ikezaki M, Nishitsuji K, Matsumura K, Manabe S, Shibukawa Y, Wada Y, Ito Y, Ihara Y. C-Mannosylated tryptophan-containing WSPW peptide binds to actinin-4 and alters E-cadherin subcellular localization in lung epithelial-like A549 cells. Biochimie 2021:S0300-9084(21)00244-3. [PMID: 34673139 DOI: 10.1016/j.biochi.2021.10.007] [Reference Citation Analysis]
62 Mohammadi E, Tahmoorespur M, Benfeitas R, Altay O, Javadmanesh A, Lam S, Mardinoglu A, Sekhavati MH. Improvement of the performance of anticancer peptides using a drug repositioning pipeline. Biotechnol J 2021;:e2100417. [PMID: 34657375 DOI: 10.1002/biot.202100417] [Reference Citation Analysis]
63 Chantawannakul J, Chatpattanasiri P, Wattayagorn V, Kongsema M, Noikaew T, Chumnanpuen P. Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line. Molecules 2021;26:5767. [PMID: 34641308 DOI: 10.3390/molecules26195767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Ng CX, Le CF, Tor YS, Lee SH. Hybrid Anticancer Peptides DN1 and DN4 Exert Selective Cytotoxicity Against Hepatocellular Carcinoma Cells by Inducing Both Intrinsic and Extrinsic Apoptotic Pathways. Int J Pept Res Ther 2021;27:2757-75. [DOI: 10.1007/s10989-021-10288-8] [Reference Citation Analysis]
65 Garizo AR, Coelho LF, Pinto S, Dias TP, Fernandes F, Bernardes N, Fialho AM. The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death. Biomedicines 2021;9:1194. [PMID: 34572379 DOI: 10.3390/biomedicines9091194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
66 Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Mukarram Shah SM, Khan H. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cell Signal 2021;87:110142. [PMID: 34487816 DOI: 10.1016/j.cellsig.2021.110142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
67 Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021;26:5119. [PMID: 34500560 DOI: 10.3390/molecules26175119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
68 Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021;142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
69 Doti N, Mardirossian M, Sandomenico A, Ruvo M, Caporale A. Recent Applications of Retro-Inverso Peptides. Int J Mol Sci 2021;22:8677. [PMID: 34445382 DOI: 10.3390/ijms22168677] [Cited by in Crossref: 8] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
70 Gasymov OK, Celik S, Agaeva G, Akyuz S, Kecel-Gunduz S, Qocayev NM, Ozel AE, Agaeva U, Bakhishova M, Aliyev JA. Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. J Mol Graph Model 2021;108:107999. [PMID: 34352727 DOI: 10.1016/j.jmgm.2021.107999] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
71 He W, Wang Y, Cui L, Su R, Wei L. Learning embedding features based on multi-sense-scaled attention architecture to improve the predictive performance of anticancer peptides. Bioinformatics 2021:btab560. [PMID: 34323948 DOI: 10.1093/bioinformatics/btab560] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
72 Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021;11:1120. [PMID: 34439786 DOI: 10.3390/biom11081120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
73 Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021;167:140-58. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
74 Peña-Carrillo MS, Pinos-Tamayo EA, Mendes B, Domínguez-Borbor C, Proaño-Bolaños C, Miguel DC, Almeida JR. Dissection of phospholipases A2 reveals multifaceted peptides targeting cancer cells, Leishmania and bacteria. Bioorg Chem 2021;114:105041. [PMID: 34130109 DOI: 10.1016/j.bioorg.2021.105041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
75 Sridhar K, Inbaraj BS, Chen BH. Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021;147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 16.0] [Reference Citation Analysis]
76 Khongdetch J, Laohakunjit N, Kaprasob R. King Boletus mushroom‐derived bioactive protein hydrolysate: characterisation, antioxidant, ACE inhibitory and cytotoxic activities. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15100] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
77 Heffernan S, Giblin L, O'Brien N. Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 2021;359:129852. [PMID: 33940471 DOI: 10.1016/j.foodchem.2021.129852] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
78 Ju X, Fan D, Kong L, Yang Q, Zhu Y, Zhang S, Su G, Li Y. Antimicrobial Peptide Brevinin-1RL1 from Frog Skin Secretion Induces Apoptosis and Necrosis of Tumor Cells. Molecules 2021;26:2059. [PMID: 33916789 DOI: 10.3390/molecules26072059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
79 Eghtedari M, Jafari Porzani S, Nowruzi B. Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters 2021;42:87-103. [DOI: 10.1016/j.phytol.2021.02.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
80 Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021;11:3017. [PMID: 33542286 DOI: 10.1038/s41598-021-82513-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 24.0] [Reference Citation Analysis]
81 Lv Z, Cui F, Zou Q, Zhang L, Xu L. Anticancer peptides prediction with deep representation learning features. Brief Bioinform 2021:bbab008. [PMID: 33529337 DOI: 10.1093/bib/bbab008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 30.0] [Reference Citation Analysis]
82 Yang L, Xie J, Almoallim HS, Alharbi SA, Chen Y. Tomentosin inhibits cell proliferation and induces apoptosis in MOLT-4 leukemia cancer cells through the inhibition of mTOR/PI3K/Akt signaling pathway. J Biochem Mol Toxicol 2021;35:e22719. [PMID: 33501684 DOI: 10.1002/jbt.22719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
83 Houshdar Tehrani MH, Gholibeikian M, Bamoniri A, Mirjalili BBF. Cancer Treatment by Caryophyllaceae-Type Cyclopeptides. Front Endocrinol (Lausanne) 2020;11:600856. [PMID: 33519710 DOI: 10.3389/fendo.2020.600856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Doucette KA, Chaiyasit P, Calkins DL, Martinez KN, Van Cleave C, Knebel CA, Tongraar A, Crans DC. The Interfacial Interactions of Glycine and Short Glycine Peptides in Model Membrane Systems. Int J Mol Sci 2020;22:E162. [PMID: 33375246 DOI: 10.3390/ijms22010162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Erreni M, Schorn T, D'Autilia F, Doni A. Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Biomolecules 2020;10:E1695. [PMID: 33353213 DOI: 10.3390/biom10121695] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
86 Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Bąkała M, Słowik J, Gagat P. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides. Pharmaceutics 2020;12:E1045. [PMID: 33142753 DOI: 10.3390/pharmaceutics12111045] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
87 Avilés-Gaxiola S, Gutiérrez-Grijalva EP, León-Felix J, Angulo-Escalante MA, Heredia JB. Peptides in Colorectal Cancer: Current State of Knowledge. Plant Foods Hum Nutr 2020;75:467-76. [PMID: 32964320 DOI: 10.1007/s11130-020-00856-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
88 Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with Dual Antimicrobial-Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020;25:E4245. [PMID: 32947811 DOI: 10.3390/molecules25184245] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]