BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao X, Li Y, Wu H. A novel scoring system for acute myeloid leukemia risk assessment based on the expression levels of six genes. Int J Mol Med 2018;42:1495-507. [PMID: 29956722 DOI: 10.3892/ijmm.2018.3739] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Song L, Chen Z, Zhang M, Zhang M, Lu X, Li C, Miao L. DDIT4 overexpression associates with poor prognosis in lung adenocarcinoma. J Cancer 2021;12:6422-8. [PMID: 34659532 DOI: 10.7150/jca.60118] [Reference Citation Analysis]
2 Brenner AK, Aasebø E, Hernandez-Valladares M, Selheim F, Berven F, Grønningsæter IS, Bartaula-Brevik S, Bruserud Ø. The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers (Basel) 2019;11:E73. [PMID: 30634713 DOI: 10.3390/cancers11010073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
3 Yin C, Zhang J, Guan W, Dou L, Liu Y, Shen M, Jia X, Xu L, Wu R, Li Y. High Expression of CLEC11A Predicts Favorable Prognosis in Acute Myeloid Leukemia. Front Oncol 2021;11:608932. [PMID: 33747924 DOI: 10.3389/fonc.2021.608932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang J, Chen X, Tian Y, Zhu G, Qin Y, Chen X, Pi L, Wei M, Liu G, Li Z, Chen C, Lv Y, Cai G. Six-gene signature for predicting survival in patients with head and neck squamous cell carcinoma. Aging (Albany NY) 2020;12:767-83. [PMID: 31927533 DOI: 10.18632/aging.102655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
5 Lin SY, Miao YR, Hu FF, Hu H, Zhang Q, Li Q, Chen Z, Guo AY. A 6-Membrane Protein Gene score for prognostic prediction of cytogenetically normal acute myeloid leukemia in multiple cohorts. J Cancer 2020;11:251-9. [PMID: 31892991 DOI: 10.7150/jca.35382] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhuang H, Chen Y, Sheng X, Hong L, Gao R, Zhuang X. Searching for a signature involving 10 genes to predict the survival of patients with acute myelocytic leukemia through a combined multi-omics analysis. PeerJ 2020;8:e9437. [PMID: 32617195 DOI: 10.7717/peerj.9437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhong J, Wu H, Bu X, Li W, Cai S, Du M, Gao Y, Ping B. Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Front Genet 2021;12:727392. [PMID: 34777463 DOI: 10.3389/fgene.2021.727392] [Reference Citation Analysis]
8 Guo S, Li B, Xu X, Wang W, Wang S, Lv T, Wang H. Construction of a 14-lncRNA risk score system predicting survival of children with acute myelocytic leukemia. Exp Ther Med 2020;20:1521-31. [PMID: 32742384 DOI: 10.3892/etm.2020.8846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Jyotsana N, Ta KT, DelGiorno KE. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front Oncol 2022;12:858462. [PMID: 35280777 DOI: 10.3389/fonc.2022.858462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fultang L, Gneo L, De Santo C, Mussai FJ. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front Oncol 2021;11:674720. [PMID: 34094976 DOI: 10.3389/fonc.2021.674720] [Reference Citation Analysis]
11 Yang Z, Shang J, Li N, Zhang L, Tang T, Tian G, Chen X. Development and validation of a 10-gene prognostic signature for acute myeloid leukaemia. J Cell Mol Med. 2020;24:4510-4523. [PMID: 32150667 DOI: 10.1111/jcmm.15109] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
12 Cheng Z, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, Quan L, Qian T, Zeng T, Si C, Huang W, Chen J, Pang Y, Ye X, Shi J, Fu L. Up-regulation of DDIT4 predicts poor prognosis in acute myeloid leukaemia. J Cell Mol Med 2020;24:1067-75. [PMID: 31755224 DOI: 10.1111/jcmm.14831] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhou X, Zheng M, Wang Q, Aa J, Cao B, Li J. Metabolomics analysis identifies lysine and taurine as candidate prognostic biomarkers for AML-M2 patients. Int J Hematol 2020;111:761-70. [PMID: 32056080 DOI: 10.1007/s12185-020-02836-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Lipreri da Silva JC, Coelho-Silva JL, Lima K, Vicari HP, Lazarini M, Costa-Lotufo LV, Traina F, Machado-Neto JA. Comprehensive analysis of cytoskeleton regulatory genes identifies ezrin as a prognostic marker and molecular target in acute myeloid leukemia. Cell Oncol (Dordr) 2021. [PMID: 34196912 DOI: 10.1007/s13402-021-00621-0] [Reference Citation Analysis]