BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 2021;9:1033. [PMID: 34579270 DOI: 10.3390/vaccines9091033] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Porosk L, Härk HH, Arukuusk P, Haljasorg U, Peterson P, Kurrikoff K. The Development of Cell-Penetrating Peptides for Efficient and Selective In Vivo Expression of mRNA in Spleen Tissue. Pharmaceutics 2023;15:952. [DOI: 10.3390/pharmaceutics15030952] [Reference Citation Analysis]
2 Lee Y, Liou C, Liu I, Chang J. T cell immunity of the nonadjuvanted HLA-restricted peptide COVID-19 vaccine.. [DOI: 10.21203/rs.3.rs-2119898/v1] [Reference Citation Analysis]
3 Pardridge WM. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med 2023:S1471-4914(23)00036-9. [PMID: 36907687 DOI: 10.1016/j.molmed.2023.02.004] [Reference Citation Analysis]
4 Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D, Wu X, Xu M. Research Advances on the Stability of mRNA Vaccines. Viruses 2023;15:668. [DOI: 10.3390/v15030668] [Reference Citation Analysis]
5 Khan NT, Zinnia MA, Islam ABMMK. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J Biomol Struct Dyn 2023;41:1617-38. [PMID: 34994279 DOI: 10.1080/07391102.2021.2024253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines 2023;11:507. [DOI: 10.3390/vaccines11030507] [Reference Citation Analysis]
7 Mei Y, Wang X. RNA modification in mRNA cancer vaccines. Clin Exp Med 2023;:1-15. [PMID: 36788153 DOI: 10.1007/s10238-023-01020-5] [Reference Citation Analysis]
8 Xian H, Zhang Y, Yu C, Wang Y. Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics 2023;15. [PMID: 36839942 DOI: 10.3390/pharmaceutics15020620] [Reference Citation Analysis]
9 von der Haar T, Mulroney TE, Hedayioglu F, Kurusamy S, Rust M, Lilley KS, Thaventhiran JE, Willis AE, Smales CM. Translation of in vitro-transcribed RNA therapeutics. Front Mol Biosci 2023;10:1128067. [PMID: 36845540 DOI: 10.3389/fmolb.2023.1128067] [Reference Citation Analysis]
10 Oude Blenke E, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, Almarsson Ö, Crommelin DJA. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. J Pharm Sci 2023;112:386-403. [PMID: 36351479 DOI: 10.1016/j.xphs.2022.11.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca Á, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today 2023;28:103458. [PMID: 36427779 DOI: 10.1016/j.drudis.2022.103458] [Reference Citation Analysis]
12 Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? J Med Virol 2023;95:e28572. [PMID: 36762592 DOI: 10.1002/jmv.28572] [Reference Citation Analysis]
13 Pozharov VP, Minko T. Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges. Pharmaceutics 2023;15. [PMID: 36678823 DOI: 10.3390/pharmaceutics15010194] [Reference Citation Analysis]
14 Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023;15. [PMID: 36678793 DOI: 10.3390/pharmaceutics15010166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hossaini Alhashemi S, Ahmadi F, Dehshahri A. Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochemistry 2023;124:269-279. [DOI: 10.1016/j.procbio.2022.12.002] [Reference Citation Analysis]
16 Bai M, Liu ZL, Zhou YY, Xu QX, Liu TX, Tian HG. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum. Pest Manag Sci 2023;79:45-54. [PMID: 36086883 DOI: 10.1002/ps.7171] [Reference Citation Analysis]
17 Kim B, Hosn RR, Remba T, Yun D, Li N, Abraham W, Melo MB, Cortes M, Li B, Zhang Y, Dong Y, Irvine DJ. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J Control Release 2023;353:241-53. [PMID: 36414195 DOI: 10.1016/j.jconrel.2022.11.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023;157:113977. [PMID: 36370519 DOI: 10.1016/j.biopha.2022.113977] [Reference Citation Analysis]
19 Xu J, Liu M, Niu X, Hanson J, Jung K, Ru P, Tu H, Jones DM, Vlasova AN, Saif LJ, Wang Q. The Cold-Adapted, Temperature-Sensitive SARS-CoV-2 Strain TS11 Is Attenuated in Syrian Hamsters and a Candidate Attenuated Vaccine. Viruses 2022;15. [PMID: 36680135 DOI: 10.3390/v15010095] [Reference Citation Analysis]
20 Weidenbacher PA, Sanyal M, Friedland N, Tang S, Arunachalam PS, Hu M, Kumru OS, Morris MK, Fontenot J, Shirreff L, Do J, Cheng YC, Vasudevan G, Feinberg MB, Villinger FJ, Hanson C, Joshi SB, Volkin DB, Pulendran B, Kim PS. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. bioRxiv 2022:2022. [PMID: 36597527 DOI: 10.1101/2022.12.25.521784] [Reference Citation Analysis]
21 Mishra V. Analysis of systemic and behavioral barriers to COVID-19 vaccination in rollout phase. International Journal of Healthcare Management 2022. [DOI: 10.1080/20479700.2022.2157934] [Reference Citation Analysis]
22 Chung S, Lee CM, Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. Nanoscale Horiz 2022;8:10-28. [PMID: 36260016 DOI: 10.1039/d2nh00289b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022;10. [PMID: 36560560 DOI: 10.3390/vaccines10122150] [Reference Citation Analysis]
24 Jefferies WA, Choi KB, Ribeca P, Kari S, Young J, Hui EA, Qi SY, Garrosvillas E, Lincez P, Welch T, Saranchova I, Pfeifer CG. A Binary RNA and DNA Self-Amplifying Platform for Next Generation Vaccines and Therapeutics.. [DOI: 10.1101/2022.12.06.519322] [Reference Citation Analysis]
25 Hayashi H, Sun J, Yanagida Y, Otera T, Sasai M, Chang CY, Tai JA, Nishikawa T, Yamashita K, Sakaguchi N, Yoshida S, Baba S, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Rakugi H, Morishita R, Yamamoto M, Nakagami H. Modified DNA vaccine confers improved humoral immune response and effective virus protection against SARS-CoV-2 delta variant. Sci Rep 2022;12:20923. [PMID: 36463322 DOI: 10.1038/s41598-022-24519-5] [Reference Citation Analysis]
26 Noor R. mRNA Vaccines as an Efficient Approach for the Rapid and Robust Induction of Host Immunity Against SARS-CoV-2. SN Compr Clin Med 2022;4:88. [DOI: 10.1007/s42399-022-01168-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Fischer LJ, Rains RC, Brett-Major SM, Senga M, Holden D, Brett-Major DM. Fielding vaccines-challenges and opportunities in outbreaks, complex emergencies, and mass gatherings. Hum Vaccin Immunother 2022;18:2104500. [PMID: 35930505 DOI: 10.1080/21645515.2022.2104500] [Reference Citation Analysis]
28 Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022;24:2. [PMID: 36416999 DOI: 10.1208/s12249-022-02455-x] [Reference Citation Analysis]
29 Lee J, Khang D. Mucosal delivery of nanovaccine strategy against COVID-19 and its variants. Acta Pharm Sin B 2022. [PMID: 36438851 DOI: 10.1016/j.apsb.2022.11.022] [Reference Citation Analysis]
30 Liu Y, Hu F, Wang S, Xu M, Yu Q, Wang L. Evaluating the integrity of polymersomes by FRET for optimization of the lyophilization parameters. Polymer 2022;260:125375. [DOI: 10.1016/j.polymer.2022.125375] [Reference Citation Analysis]
31 Paradis NJ, Clark A, Gogoj H, Lakernick PM, Vaden TD, Wu C. To probe the binding of TMPyP4 to c-MYC G-quadruplex with in water and in imidazolium-based ionic liquids using spectroscopy coupled with molecular dynamics simulations. Journal of Molecular Liquids 2022;365:120097. [DOI: 10.1016/j.molliq.2022.120097] [Reference Citation Analysis]
32 Wang R, Huang X, Cao T, Sun C, Luo D, Qiu H, Wu M, Huang X, Yu C, Li J, Kong D, Ma J, Zhang X, Hu P, Zhang Y, Luo C, Zhao H, Li Y, Deng Y, Qin C, Xie L. Development of a thermostable SARS-CoV-2 variant-based bivalent protein vaccine with cross-neutralizing potency against Omicron subvariants. Virology 2022;576:61-8. [PMID: 36174448 DOI: 10.1016/j.virol.2022.09.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Nagpal D, Nagpal S, Kaushik D, Kathuria H. Current clinical status of new COVID-19 vaccines and immunotherapy. Environ Sci Pollut Res Int 2022. [PMID: 36063274 DOI: 10.1007/s11356-022-22661-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm 2022;3. [DOI: 10.1002/mco2.167] [Reference Citation Analysis]
35 Rahmani-kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. Molecular Therapy - Nucleic Acids 2022;29:705-717. [DOI: 10.1016/j.omtn.2022.08.012] [Reference Citation Analysis]
36 Su P, Zhang L, Zhou F, Zhang L. Circular RNA vaccine, a novel mRNA vaccine design strategy for SARS-CoV-2 and variants. MedComm (2020) 2022;3:e153. [PMID: 35845353 DOI: 10.1002/mco2.153] [Reference Citation Analysis]
37 Li Y, Han Z, Ma C, Hong L, Ding Y, Chen Y, Zhao J, Liu D, Sun G, Zuo T, Cheng H, Han CC. Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol). Struct Dyn 2022;9:054901. [PMID: 36090796 DOI: 10.1063/4.0000158] [Reference Citation Analysis]
38 Cao Y, He Z, Chen Q, He X, Su L, Yu W, Zhang M, Yang H, Huang X, Li J. Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. Nano Lett 2022. [PMID: 35969167 DOI: 10.1021/acs.nanolett.2c01784] [Reference Citation Analysis]
39 Saied AA. mRNA vaccines and clinical research in Africa - From hope to reality. Int J Surg 2022;105:106833. [PMID: 35963578 DOI: 10.1016/j.ijsu.2022.106833] [Reference Citation Analysis]
40 Oude Egberink R, Zegelaar HM, El Boujnouni N, Versteeg EMM, Daamen WF, Brock R. Biomaterial-Mediated Protein Expression Induced by Peptide-mRNA Nanoparticles Embedded in Lyophilized Collagen Scaffolds. Pharmaceutics 2022;14:1619. [DOI: 10.3390/pharmaceutics14081619] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Li Z, Zhang X, Ho W, Bai X, Jaijyan DK, Li F, Kumar R, Kolloli A, Subbian S, Zhu H, Xu X. Lipid‐Polymer Hybrid “Particle‐in‐Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID‐19 Vaccines. Adv Funct Materials. [DOI: 10.1002/adfm.202204462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Sparrow E, Hasso-agopsowicz M, Kaslow DC, Singh K, Rao R, Chibi M, Makubalo LE, Reeder JC, Kang G, Karron RA, Cravioto A, Lanata CF, Friede M, Abela-ridder B, Solomon AW, Dagne DA, Giersing B. Leveraging mRNA Platform Technology to Accelerate Development of Vaccines for Some Emerging and Neglected Tropical Diseases Through Local Vaccine Production. Front Trop Dis 2022;3. [DOI: 10.3389/fitd.2022.844039] [Reference Citation Analysis]
43 Izza N, Watanabe N, Okamoto Y, Suga K, Wibisono Y, Kajimura N, Mitsuoka K, Umakoshi H. Dependence of the Core–Shell Structure on the Lipid Composition of Nanostructured Lipid Carriers: Implications for Drug Carrier Design. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Renu S, Shank-retzlaff M, Sharpe J, Bronsart L, Mohanty P. Capillary-Mediated Vitrification: Preservation of mRNA at Elevated Temperatures. AAPS J 2022;24:75. [DOI: 10.1208/s12248-022-00723-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Sung JC, Lai NC, Wu K, Choi M, Ma CH, Lin J, Kuok C, Leong W, Lam W, Hamied YK, Lam DM, Sze ET, Kwong KW. Safety and Immunogenicity of Inactivated Bacillus subtilis Spores as a Heterologous Antibody Booster for COVID-19 Vaccines. Vaccines 2022;10:1014. [DOI: 10.3390/vaccines10071014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Feng R, Chang ACY, Ni R, Li JCY, Chau Y. mRNA Delivery and Storage by Co-Assembling Nanostructures with Designer Oligopeptides. ACS Appl Bio Mater 2022. [PMID: 35729172 DOI: 10.1021/acsabm.2c00397] [Reference Citation Analysis]
47 Aves KL, Janitzek CM, Fougeroux CE, Theander TG, Sander AF. Freeze-Drying of a Capsid Virus-like Particle-Based Platform Allows Stable Storage of Vaccines at Ambient Temperature. Pharmaceutics 2022;14:1301. [PMID: 35745873 DOI: 10.3390/pharmaceutics14061301] [Reference Citation Analysis]
48 Gerhardt A, Voigt E, Archer M, Reed S, Larson E, Van Hoeven N, Kramer R, Fox C, Casper C. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol Ther Methods Clin Dev 2022;25:205-14. [PMID: 35308783 DOI: 10.1016/j.omtm.2022.03.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
49 Tennant R, Tetui M, Grindrod K, Burns CM. Understanding Human Factors Challenges on the Front Lines of Mass COVID-19 Vaccination Clinics: Human-Systems Modelling Study (Preprint). JMIR Human Factors 2022. [DOI: 10.2196/39670] [Reference Citation Analysis]
50 Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022;27:38. [PMID: 35562685 DOI: 10.1186/s11658-022-00339-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, Wang C, Xiao X, Dong X, Guo L, Lu S, Yang C, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Yisimayi A, Liu S, Huang W, Cao Y, Wang Y, Zhou Z, Peng X, Wang J, Xie XS, Wei W. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022;185:1728-1744.e16. [PMID: 35460644 DOI: 10.1016/j.cell.2022.03.044] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 69.0] [Reference Citation Analysis]
52 Huang K, Li N, Li Y, Zhu J, Fan Q, Yang J, Gao Y, Liu Y, Hou Q, Gao S, Wei K, Deng C, Zuo C, Sun Z. Delivery of Circular mRNA via Degradable Lipid Nanoparticles against SARS-CoV-2 Delta Variant.. [DOI: 10.1101/2022.05.12.491597] [Reference Citation Analysis]
53 Sabitha S, Shobana N, Prakash P, Padmanaban S, Sathiyashree M, Saigeetha S, Chakravarthi S, Uthaman S, Park IK, Samrot AV. A Review of Different Vaccines and Strategies to Combat COVID-19. Vaccines (Basel) 2022;10. [PMID: 35632493 DOI: 10.3390/vaccines10050737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Grau S, Martín-garcía E, Ferrández O, Martín R, Tejedor-vaquero S, Gimeno R, Magri G, Maldonado R. COVID-19 mRNA Vaccines Preserve Immunogenicity after Re-Freezing. Vaccines 2022;10:594. [DOI: 10.3390/vaccines10040594] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
56 Yang MJ, Kim J, Lee Y, Lee W, Park C. NMR Structure and Biophysical Characterization of Thermophilic Single-Stranded DNA Binding Protein from Sulfolobus Solfataricus. IJMS 2022;23:3099. [DOI: 10.3390/ijms23063099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Sciaccaluga C, D'ascenzi F, Cameli M, Gallotta M, Menci D, Antonelli G, Banchi B, Mochi V, Valente S, Focardi M. Case Report: Two Case Reports of Acute Myopericarditis After mRNA COVID-19 Vaccine. Front Cardiovasc Med 2022;9:827237. [DOI: 10.3389/fcvm.2022.827237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Kis Z. Stability Modelling of mRNA Vaccine Quality Based on Temperature Monitoring throughout the Distribution Chain. Pharmaceutics 2022;14:430. [DOI: 10.3390/pharmaceutics14020430] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Fanelli A, Mantegazza L, Hendrickx S, Capua I. Thermostable Vaccines in Veterinary Medicine: State of the Art and Opportunities to Be Seized. Vaccines 2022;10:245. [DOI: 10.3390/vaccines10020245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Farjami A, Montazersaheb S, Soofiyani S, Akbarzadehlaleh P, Salatin S. Biopharmaceuticals for prevention of COVID-19: A scoping review. Asian Pac J Trop Med 2022;15:245. [DOI: 10.4103/1995-7645.348158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Tennant R, Tetui M, Grindrod K, Burns CM. MULTI-DICIPLINARY DESIGN AND IMPLEMENTATION OF A MASS VACCINATION CLINIC MOBILE APPLICATION TO SUPPORT DECISION-MAKING. IEEE J Transl Eng Health Med 2022. [DOI: 10.1109/jtehm.2022.3224740] [Reference Citation Analysis]
62 Guevara ML, Persano F, Persano S. Lipid Nanoparticles to Harness the Therapeutic Potential of mRNA for Cancer Treatment. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_14] [Reference Citation Analysis]
63 Jackson N. SARS-COV-2 and Other mRNA Vaccines. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_6] [Reference Citation Analysis]
64 Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021;13:2090. [PMID: 34959371 DOI: 10.3390/pharmaceutics13122090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]