BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021;9:359. [PMID: 33918072 DOI: 10.3390/vaccines9040359] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 48.5] [Reference Citation Analysis]
Number Citing Articles
1 Arroyo-Urea EM, Muñoz-Hernando M, Leo-Barriga M, Herranz F, González-Paredes A. A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems. Drug Deliv 2023;30:2179128. [PMID: 36803136 DOI: 10.1080/10717544.2023.2179128] [Reference Citation Analysis]
2 Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnol J 2023;21:854-65. [PMID: 36601704 DOI: 10.1111/pbi.14001] [Reference Citation Analysis]
3 Zhang Y, Yan J, Hou X, Wang C, Kang DD, Xue Y, Du S, Deng B, McComb DW, Liu SL, Zhong Y, Dong Y. STING Agonist-Derived LNP-mRNA Vaccine Enhances Protective Immunity Against SARS-CoV-2. Nano Lett 2023. [PMID: 36942873 DOI: 10.1021/acs.nanolett.2c04883] [Reference Citation Analysis]
4 Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, Alexander C, Ashford MB. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J Control Release 2023;356:580-94. [PMID: 36918085 DOI: 10.1016/j.jconrel.2023.03.011] [Reference Citation Analysis]
5 Lang X, Gao X, Wei M, Qian N, Min W. Bioorthogonal chemical imaging of solid lipid nanoparticles with minimal labeling by stimulated Raman scattering microscopy. Natural Sciences 2023. [DOI: 10.1002/ntls.202103304] [Reference Citation Analysis]
6 Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, Purohit A, Welsby PJ, Harashima H, Yu-Wai-Man C, Tagalakis AD. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery. Adv Healthc Mater 2023;:e2203022. [PMID: 36906918 DOI: 10.1002/adhm.202203022] [Reference Citation Analysis]
7 Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023;:0. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Reference Citation Analysis]
8 German-cortés J, Vilar-hernández M, Rafael D, Abasolo I, Andrade F. Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics 2023;15:831. [DOI: 10.3390/pharmaceutics15030831] [Reference Citation Analysis]
9 Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023;12:e2202400. [PMID: 36453542 DOI: 10.1002/adhm.202202400] [Reference Citation Analysis]
10 Cheng R, Santos HA. Smart Nanoparticle-Based Platforms for Regulating Tumor Microenvironment and Cancer Immunotherapy. Adv Healthc Mater 2023;12:e2202063. [PMID: 36479842 DOI: 10.1002/adhm.202202063] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Soni A, Bhandari MP, Tripathi GK, Bundela P, Khiriya PK, Khare PS, Kashyap MK, Dey A, Vellingiri B, Sundaramurthy S, Suresh A, Pérez de la Lastra JM. Nano-biotechnology in tumour and cancerous disease: A perspective review. J Cell Mol Med 2023;27:737-62. [PMID: 36840363 DOI: 10.1111/jcmm.17677] [Reference Citation Analysis]
12 Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023;:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Reference Citation Analysis]
13 Maher R, Moreno-borrallo A, Jindal D, Mai BT, Ruiz-hernandez E, Harkin A. Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023;15:746. [DOI: 10.3390/pharmaceutics15030746] [Reference Citation Analysis]
14 Mollashahi B, Latifi-Navid H, Owliaee I, Shamdani S, Uzan G, Jamehdor S, Naserian S. Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules 2023;28. [PMID: 36838970 DOI: 10.3390/molecules28041982] [Reference Citation Analysis]
15 Mohammed HA, Khan RA, Singh V, Yusuf M, Akhtar N, Sulaiman GM, Albukhaty S, Abdellatif AAH, Khan M, Mohammed SAA, Al-subaiyel AM. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnology Reviews 2023;12. [DOI: 10.1515/ntrev-2022-0517] [Reference Citation Analysis]
16 Albasri OWA, Kumar PV, Rajagopal MS. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules 2023;28. [PMID: 36838817 DOI: 10.3390/molecules28041833] [Reference Citation Analysis]
17 Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023;:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Reference Citation Analysis]
18 Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin Drug Deliv 2023;20:241-57. [PMID: 36644850 DOI: 10.1080/17425247.2023.2167978] [Reference Citation Analysis]
19 Alallam B, Choukaife H, Seyam S, Lim V, Alfatama M. Advanced Drug Delivery Systems for Renal Disorders. Gels 2023;9. [PMID: 36826285 DOI: 10.3390/gels9020115] [Reference Citation Analysis]
20 Gautier L. Nanotechnology and cancer therapeutics: delivering on the hype? Biotechniques 2023;74:63-7. [PMID: 36856138 DOI: 10.2144/btn-2022-0123] [Reference Citation Analysis]
21 Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio Med Chem Au 2023. [DOI: 10.1021/acsbiomedchemau.2c00073] [Reference Citation Analysis]
22 Prakashan D, Roberts A, Gandhi S. Recent advancement of nanotherapeutics in accelerating chronic wound healing process for surgical wounds and diabetic ulcers. Biotechnol Genet Eng Rev 2023;:1-29. [PMID: 36641600 DOI: 10.1080/02648725.2023.2167432] [Reference Citation Analysis]
23 Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Res 2023;:1-17. [PMID: 36685637 DOI: 10.1007/s12274-022-5267-5] [Reference Citation Analysis]
24 Ayan S, Aranci-ciftci K, Ciftci F, Ustundag CB. Nanotechnology and COVID-19: Prevention, diagnosis, vaccine, and treatment strategies. Front Mater 2023;9. [DOI: 10.3389/fmats.2022.1059184] [Reference Citation Analysis]
25 Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection. bioRxiv 2023:2023. [PMID: 36711993 DOI: 10.1101/2023.01.03.522662] [Reference Citation Analysis]
26 Dini Fatini Mohammad Faizal N, Cairul Iqbal Mohd Amin M. Recent updates on liposomal formulations for detection, prevention and treatment of coronavirus disease (COVID-19). Int J Pharm 2023;630:122421. [PMID: 36410670 DOI: 10.1016/j.ijpharm.2022.122421] [Reference Citation Analysis]
27 Namiot ED, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Nanoparticles in Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines. Int J Mol Sci 2023;24. [PMID: 36614230 DOI: 10.3390/ijms24010787] [Reference Citation Analysis]
28 Dopierała K, Weiss M, Krajewska M, Błońska J. Towards understanding the binding affinity of lipid drug carriers to serum albumin. Chem Phys Lipids 2023;250:105271. [PMID: 36509110 DOI: 10.1016/j.chemphyslip.2022.105271] [Reference Citation Analysis]
29 Alexiou A, Tsagkaris C, Chatzichronis S, Koulouris A, Haranas I, Gkigkitzis I, Zouganelis G, Mukerjee N, Maitra S, Jha NK, Batiha GE, Kamal MA, Nikolaou M, Ashraf GM. The Fractal Viewpoint of Tumors and Nanoparticles. Curr Med Chem 2023;30:356-70. [PMID: 35927901 DOI: 10.2174/0929867329666220801152347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Liu H, Zhu X, Wei Y, Song C, Wang Y. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother 2023;157:114065. [PMID: 36481408 DOI: 10.1016/j.biopha.2022.114065] [Reference Citation Analysis]
31 Rb Singh K, Nagpure G, Singh J, Singh RP. Introduction to drug-delivery techniques based on nanotechnological approaches. Nanotechnology for Drug Delivery and Pharmaceuticals 2023. [DOI: 10.1016/b978-0-323-95325-2.00010-9] [Reference Citation Analysis]
32 Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023;40:27-46. [PMID: 36600047 DOI: 10.1007/s11095-022-03460-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. All Life 2022;15:843-869. [DOI: 10.1080/26895293.2022.2103592] [Reference Citation Analysis]
34 Münter R, Simonsen JB. Comment on "Optimal centrifugal isolating of liposome-protein complexes from human plasma" by L. Digiacomo, F. Giulimondi, A. L. Capriotti, S. Piovesana, C. M. Montone, R. Z. Chiozzi, A. Laganá, M. Mahmoudi, D. Pozzi and G. Caracciolo, Nanoscale Adv., 2021, 3, 3824. Nanoscale Adv 2022;5:290-9. [PMID: 36605796 DOI: 10.1039/d2na00343k] [Reference Citation Analysis]
35 Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials (Basel) 2022;12. [PMID: 36558344 DOI: 10.3390/nano12244494] [Reference Citation Analysis]
36 Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022;14. [PMID: 36559301 DOI: 10.3390/pharmaceutics14122808] [Reference Citation Analysis]
37 Xu H, Cui W, Zong Z, Tan Y, Xu C, Cao J, Lai T, Tang Q, Wang Z, Sui X, Wang C. A facile method for anti-cancer drug encapsulation into polymersomes with a core-satellite structure. Drug Deliv 2022;29:2414-27. [PMID: 35904177 DOI: 10.1080/10717544.2022.2103209] [Reference Citation Analysis]
38 Chauhan PS, Yadav D, Jin JO. The Therapeutic Potential of Algal Nanoparticles: A Brief Review. Comb Chem High Throughput Screen 2022;25:2443-51. [PMID: 34477514 DOI: 10.2174/1386207324666210903143832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Sarangi MK, Padhi S, Rath G, Nanda SS, Yi DK. Success of nano-vaccines against COVID-19: a transformation in nanomedicine. Expert Rev Vaccines 2022;21:1739-61. [PMID: 36384360 DOI: 10.1080/14760584.2022.2148659] [Reference Citation Analysis]
40 Achmad H, Saleh Ibrahim Y, Mohammed Al-taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis Ramírez-coronel A, Turki Jalil A, Setia Budi H, Sawitri W, Elena Stanislavovna M, Gupta J. Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. International Immunopharmacology 2022;113:109434. [DOI: 10.1016/j.intimp.2022.109434] [Reference Citation Analysis]
41 Rodrigues Arruda B, Mendes MGA, Freitas PGCD, Reis AVF, Lima T, Crisóstomo LCCF, Nogueira KAB, Pessoa C, Petrilli R, Eloy JO. Nanocarriers for delivery of taxanes: A review on physicochemical and biological aspects. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104070] [Reference Citation Analysis]
42 Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: State-of-the-art review of therapies and theratypes. J Allergy Clin Immunol 2022;150:1279-88. [PMID: 36328808 DOI: 10.1016/j.jaci.2022.10.007] [Reference Citation Analysis]
43 Li M, Ren J, Si X, Sun Z, Wang P, Zhang X, Liu K, Wei B. The global mRNA vaccine patent landscape. Hum Vaccin Immunother 2022;18:2095837. [PMID: 35797353 DOI: 10.1080/21645515.2022.2095837] [Reference Citation Analysis]
44 de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022;11. [PMID: 36558778 DOI: 10.3390/pathogens11121444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022;14. [PMID: 36559049 DOI: 10.3390/pharmaceutics14122554] [Reference Citation Analysis]
46 Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022;16:17497-551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Mundargi RC, Taneja N, Hadia JJ, Khopade AJ. Liposomes as Targeted Drug‐Delivery Systems. Targeted Drug Delivery 2022. [DOI: 10.1002/9783527827855.ch4] [Reference Citation Analysis]
48 Teixeira MI, Lopes CM, Amaral MH, Costa PC. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): a current overview of active targeting in brain diseases. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112999] [Reference Citation Analysis]
49 Choi K, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. IJMS 2022;23:12397. [DOI: 10.3390/ijms232012397] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Helmy SA, El-Morsi RM, Helmy SAM, El-Masry SM. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. J Drug Deliv Sci Technol 2022;76:103762. [PMID: 36097606 DOI: 10.1016/j.jddst.2022.103762] [Reference Citation Analysis]
51 Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. Fundamental Research 2022. [DOI: 10.1016/j.fmre.2022.09.011] [Reference Citation Analysis]
52 Catalano A, Iacopetta D, Ceramella J, Maio AC, Basile G, Giuzio F, Bonomo MG, Aquaro S, Walsh TJ, Sinicropi MS, Saturnino C, Geronikaki A, Salzano G. Are Nutraceuticals Effective in COVID-19 and Post-COVID Prevention and Treatment? Foods 2022;11:2884. [PMID: 36141012 DOI: 10.3390/foods11182884] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022;14:1965. [PMID: 36145713 DOI: 10.3390/pharmaceutics14091965] [Reference Citation Analysis]
54 Juan A, Noblejas-lópez MDM, Bravo I, Arenas-moreira M, Blasco-navarro C, Clemente-casares P, Lara-sánchez A, Pandiella A, Alonso-moreno C, Ocaña A. Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers 2022;14:4474. [DOI: 10.3390/cancers14184474] [Reference Citation Analysis]
55 Osouli-bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022;14:1940. [DOI: 10.3390/pharmaceutics14091940] [Reference Citation Analysis]
56 Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Reference Citation Analysis]
57 Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022;23:10068. [PMID: 36077466 DOI: 10.3390/ijms231710068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Leong EWX, Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022;10:2179. [DOI: 10.3390/biomedicines10092179] [Reference Citation Analysis]
59 Abdolmaleki G, Taheri MA, Paridehpour S, Mohammadi NM, Tabatabaei YA, Mousavi T, Amin M. A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. DARU J Pharm Sci 2022. [DOI: 10.1007/s40199-022-00446-8] [Reference Citation Analysis]
60 O’connell C, Vandenheuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. IJMS 2022;23:9981. [DOI: 10.3390/ijms23179981] [Reference Citation Analysis]
61 Kumar R, Dkhar DS, Kumari R, Divya, Mahapatra S, Dubey VK, Chandra P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. Journal of Drug Delivery Science and Technology 2022;74:103526. [DOI: 10.1016/j.jddst.2022.103526] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
62 Ryu J. New Aspects on the Treatment of Retinopathy of Prematurity: Currently Available Therapies and Emerging Novel Therapeutics. IJMS 2022;23:8529. [DOI: 10.3390/ijms23158529] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Rauf A, Abu-Izneid T, Khalil AA, Hafeez N, Olatunde A, Rahman M, Semwal P, Al-Awthan YS, Bahattab OS, Khan IN, Khan MA, Sharma R. Nanoparticles in clinical trials of COVID-19: An update. Int J Surg 2022;104:106818. [PMID: 35953020 DOI: 10.1016/j.ijsu.2022.106818] [Reference Citation Analysis]
64 Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.08.013] [Reference Citation Analysis]
65 Huang J, Xiao K. Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022;14:1586. [DOI: 10.3390/pharmaceutics14081586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gupta U, Saren BN, Khaparkhuntikar K, Madan J, Singh PK. Applications of lipid-engineered nanoplatforms in the delivery of various cancer therapeutics to surmount breast cancer. J Control Release 2022;348:1089-115. [PMID: 35640765 DOI: 10.1016/j.jconrel.2022.05.034] [Reference Citation Analysis]
67 Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.948705] [Reference Citation Analysis]
68 Broudic K, Amberg A, Schaefer M, Spirkl HP, Bernard MC, Desert P. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol Appl Pharmacol 2022;:116143. [PMID: 35843341 DOI: 10.1016/j.taap.2022.116143] [Reference Citation Analysis]
69 Rodríguez-Castejón J, Gómez-Aguado I, Beraza-Millor M, Solinís MÁ, Del Pozo-Rodríguez A, Rodríguez-Gascón A. Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease. Nanomaterials (Basel) 2022;12:2339. [PMID: 35889565 DOI: 10.3390/nano12142339] [Reference Citation Analysis]
70 Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022;23:7597. [PMID: 35886945 DOI: 10.3390/ijms23147597] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Butowska K, Han X, Gong N, El-mayta R, Haley RM, Xue L, Zhong W, Guo W, Wang K, Mitchell MJ. Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.011] [Reference Citation Analysis]
72 Nasrollahpour M, Vafaee M, Razzaghi S. Structural and dynamical properties of Palmitoyl-Oleoyl phosphatidylserine lipid nanotubes containing cholesterols and PEGylated dioleoyl Phosphatidylethanolamine: A Coarse-Grained molecular dynamics simulation. Chemical Engineering Science 2022;260:117848. [DOI: 10.1016/j.ces.2022.117848] [Reference Citation Analysis]
73 Mingot-Castellano ME, Butta N, Canaro M, Gómez Del Castillo Solano MDC, Sánchez-González B, Jiménez-Bárcenas R, Pascual-Izquierdo C, Caballero-Navarro G, Entrena Ureña L, José González-López T, On Behalf Of The Gepti. COVID-19 Vaccines and Autoimmune Hematologic Disorders. Vaccines (Basel) 2022;10:961. [PMID: 35746569 DOI: 10.3390/vaccines10060961] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
74 Ferhan AR, Park S, Park H, Tae H, Jackman JA, Cho N. Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Adv Funct Materials. [DOI: 10.1002/adfm.202203669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zhao Y, Li L, Zhou E, Wang J, Wang Y, Guo L, Zhang X. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts 2022;04:e43-e60. [DOI: 10.1055/s-0042-1751036] [Reference Citation Analysis]
76 Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. Adv Mater 2022;:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
77 Ghidini M, Silva SG, Evangelista J, do Vale MLC, Farooqi AA, Pinheiro M. Nanomedicine for the Delivery of RNA in Cancer. Cancers 2022;14:2677. [DOI: 10.3390/cancers14112677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Smiley SB, Zarrinmayeh H, Das SK, Pollok KE, Vannier MW, Veronesi MC. Novel therapeutics and drug-delivery approaches in the modulation of glioblastoma stem cell resistance. Ther Deliv 2022. [PMID: 35615860 DOI: 10.4155/tde-2021-0086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Alva C, Vidakovic I, Lorber B, Schachner-nedherer A, Zettl M, Khinast J, Prassl R, Hsiao W. Can Liposomes Survive Inkjet Printing? The Effect of Jetting on Key Liposome Attributes for Drug Delivery Applications. J Pharm Innov. [DOI: 10.1007/s12247-022-09643-z] [Reference Citation Analysis]
80 Rodrigues EM, Calvert ND, Crawford JC, Liu N, Shuhendler AJ, Hemmer E. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. Small 2022;:e2107130. [PMID: 35560500 DOI: 10.1002/smll.202107130] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022. [PMID: 35552983 DOI: 10.1007/s11095-022-03286-y] [Reference Citation Analysis]
82 Naziris N, Demetzos C. Lipid Nanoparticles as Platforms for Theranostic Purposes: Recent Advances in the Field. JNT 2022;3:86-101. [DOI: 10.3390/jnt3020006] [Reference Citation Analysis]
83 Algarni A, Pilkington EH, Suys EJA, Al-Wassiti H, Pouton CW, Truong NP. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci 2022. [PMID: 35475455 DOI: 10.1039/d2bm00168c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
84 Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
85 Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022;12:867655. [PMID: 35425710 DOI: 10.3389/fonc.2022.867655] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
86 Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med 2022;54:455-65. [PMID: 35440755 DOI: 10.1038/s12276-022-00757-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
87 Cholkar SS, Gawade AR, Kuchekar AB. The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosci , Biotech Res Asia 2022;19:183-189. [DOI: 10.13005/bbra/2977] [Reference Citation Analysis]
88 Cholkar SS, Gawade AR, Kuchekar AB. Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosci , Biotech Res Asia 2022;19:199-213. [DOI: 10.13005/bbra/2979] [Reference Citation Analysis]
89 Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res. [DOI: 10.1007/s11095-022-03214-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022;11:6. [DOI: 10.3390/biotech11010006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
92 Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022;23:2408. [PMID: 35269550 DOI: 10.3390/ijms23052408] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
93 Cakir-Aktas C, Erdener SE, Teke B, Bozdag Pehlivan S, Zeybek ND, Taskiran-Sag A, Kaya Z, Dalkara T, Mut M. Confocal reflectance microscopy for metal and lipid nanoparticle visualization in the brain. Nanomedicine (Lond) 2022. [PMID: 35142565 DOI: 10.2217/nnm-2021-0350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Juan A, del Mar Noblejas-lópez M, Arenas-moreira M, Alonso-moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022;9:805336. [DOI: 10.3389/fcell.2021.805336] [Reference Citation Analysis]
95 Costoya J, Surnar B, Kalathil AA, Kolishetti N, Dhar S. Controlled release nanoplatforms for three commonly used chemotherapeutics. Mol Aspects Med 2022;83:101043. [PMID: 34920863 DOI: 10.1016/j.mam.2021.101043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
96 Guzmán E, Santini E, Ferrari M, Liggieri L, Ravera F. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. Environ Sci Technol 2022. [PMID: 35078318 DOI: 10.1021/acs.est.1c06885] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
97 White BM, Morrisey EE, Peranteau WH. In Utero Gene Editing for Inherited Lung Diseases. Curr Stem Cell Rep. [DOI: 10.1007/s40778-021-00205-6] [Reference Citation Analysis]
98 Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J Clust Sci. [DOI: 10.1007/s10876-021-02213-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Ningthoujam SS. Preclinical, clinical, and patented nanodrug delivery systems. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00003-x] [Reference Citation Analysis]
100 Swana M, Blee J, Stillman N, Ives J, Hauert S. Swarms: The Next Frontier for Cancer Nanomedicine. Emergence, Complexity and Computation 2022. [DOI: 10.1007/978-3-031-04379-6_12] [Reference Citation Analysis]
101 Khaledian S, Dayani M, Fatahian A, Fatahian R, Martinez F. Efficiency of lipid-based nano drug delivery systems in crossing the blood–brain barrier: A review. Journal of Molecular Liquids 2022;346:118278. [DOI: 10.1016/j.molliq.2021.118278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Pantelić I, Ilić T, Nikolić I, Savić S. Lipid nanoparticles employed in mRNA-based COVID-19 vaccines: An overview of materials and processes used for development and production. Arhiv za farmaciju 2022;72:20-35. [DOI: 10.5937/arhfarm72-33660] [Reference Citation Analysis]
103 Papi M, Pozzi D, Palmieri V, Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today 2022. [DOI: 10.1016/j.nantod.2022.101403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
104 Brown LR. Biomaterials in Their Role in Creating New Approaches for the Delivery of Drugs, Proteins, Nucleic Acids, and Mammalian Cells in Safety Pharmacology. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays 2022. [DOI: 10.1007/978-3-030-73317-9_25-1] [Reference Citation Analysis]
105 Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022;180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
106 Fobian SF, Cheng Z, Ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics 2021;14:26. [PMID: 35056922 DOI: 10.3390/pharmaceutics14010026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
107 Sun Z, Li W, Lenzo JC, Holden JA, Mccullough MJ, O’connor AJ, O’brien-simpson NM. The Potential of Calcium Phosphate Nanoparticles as Adjuvants and Vaccine Delivery Vehicles. Front Mater 2021;8:788373. [DOI: 10.3389/fmats.2021.788373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
108 Rahimnejad M, Rabiee N, Ahmadi S, Jahangiri S, Sajadi SM, Akhavan O, Saeb MR, Kwon W, Kim M, Hahn SK. Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Appl Bio Mater 2021;4:8110-28. [PMID: 35005915 DOI: 10.1021/acsabm.1c00932] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
109 Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021;13:2091. [PMID: 34959372 DOI: 10.3390/pharmaceutics13122091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
110 Zhang Z, Kuo JC, Zhang C, Huang Y, Zhou Z, Lee RJ. A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021;13:2060. [PMID: 34959344 DOI: 10.3390/pharmaceutics13122060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
111 Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
112 Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021;179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Vu MN, Kelly HG, Kent SJ, Wheatley AK. Current and future nanoparticle vaccines for COVID-19. EBioMedicine 2021;74:103699. [PMID: 34801965 DOI: 10.1016/j.ebiom.2021.103699] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
114 Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021;9:1345. [PMID: 34835276 DOI: 10.3390/vaccines9111345] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
115 Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021;14:1173. [PMID: 34832955 DOI: 10.3390/ph14111173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
116 Walde P, Ichikawa S. Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences 2021;11:10345. [DOI: 10.3390/app112110345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
117 Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci 2021;22:11596. [PMID: 34769025 DOI: 10.3390/ijms222111596] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
118 Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021;608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
119 Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021;7:e07994. [PMID: 34632135 DOI: 10.1016/j.heliyon.2021.e07994] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
120 Bayó C, Jung G, Español-Rego M, Balaguer F, Benitez-Ribas D. Vaccines for Non-Viral Cancer Prevention. Int J Mol Sci 2021;22:10900. [PMID: 34681560 DOI: 10.3390/ijms222010900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Das A, Ali N. Nanovaccine: an emerging strategy. Expert Rev Vaccines 2021;20:1273-90. [PMID: 34550859 DOI: 10.1080/14760584.2021.1984890] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
122 Shah SM, Alsaab HO, Rawas-Qalaji MM, Uddin MN. A Review on Current COVID-19 Vaccines and Evaluation of Particulate Vaccine Delivery Systems. Vaccines (Basel) 2021;9:1086. [PMID: 34696194 DOI: 10.3390/vaccines9101086] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
123 Ottonelli I, Duskey JT, Rinaldi A, Grazioli MV, Parmeggiani I, Vandelli MA, Wang LZ, Prud'homme RK, Tosi G, Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics 2021;13:1495. [PMID: 34575571 DOI: 10.3390/pharmaceutics13091495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
124 Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021;2021:3041969. [PMID: 34512761 DOI: 10.1155/2021/3041969] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
125 Zhang B, Zhang L, Duan E, Zhang R, Liu J, Shi P, Mei Y, Li R, Zhang L. pH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids Surf B Biointerfaces 2021;208:112106. [PMID: 34534915 DOI: 10.1016/j.colsurfb.2021.112106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021;143:112137. [PMID: 34507118 DOI: 10.1016/j.biopha.2021.112137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Ali MS, Hooshmand N, El-Sayed M, Labouta HI. Microfluidics for Development of Lipid Nanoparticles: Paving the Way for Nucleic Acids to the Clinic. ACS Appl Bio Mater 2021. [PMID: 35014835 DOI: 10.1021/acsabm.1c00732] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
128 Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021;16:5713-43. [PMID: 34465991 DOI: 10.2147/IJN.S327334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
129 Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021;131:16-40. [PMID: 34153512 DOI: 10.1016/j.actbio.2021.06.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 31] [Article Influence: 23.5] [Reference Citation Analysis]
130 Gambaro FM, Ummarino A, Torres Andón F, Ronzoni F, Di Matteo B, Kon E. Drug Delivery Systems for the Treatment of Knee Osteoarthritis: A Systematic Review of In Vivo Studies. Int J Mol Sci 2021;22:9137. [PMID: 34502046 DOI: 10.3390/ijms22179137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
131 Wen J, Moloney EB, Canning A, Donohoe E, Ritter T, Wang J, Xiang D, Wu J, Li Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol Res 2021;172:105833. [PMID: 34418563 DOI: 10.1016/j.phrs.2021.105833] [Reference Citation Analysis]
132 Abd Elkodous M, Olojede SO, Morsi M, El-Sayyad GS. Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Adv 2021;11:26463-80. [PMID: 35480012 DOI: 10.1039/d1ra04835j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
133 Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021;13:1183. [PMID: 34452143 DOI: 10.3390/pharmaceutics13081183] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
134 Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021;13:1106. [PMID: 34452067 DOI: 10.3390/pharmaceutics13081106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
135 Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021;18:2867-88. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
136 Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021;11:358. [PMID: 34221822 DOI: 10.1007/s13205-021-02905-6] [Reference Citation Analysis]
137 Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021;13:945. [PMID: 34202584 DOI: 10.3390/pharmaceutics13070945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
138 Kuter DJ. Exacerbation of immune thrombocytopenia following COVID-19 vaccination. Br J Haematol 2021. [PMID: 34075578 DOI: 10.1111/bjh.17645] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
139 Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials (Basel) 2021;11:1251. [PMID: 34068834 DOI: 10.3390/nano11051251] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
140 Vlatkovic I. Non-Immunotherapy Application of LNP-mRNA: Maximizing Efficacy and Safety. Biomedicines 2021;9:530. [PMID: 34068715 DOI: 10.3390/biomedicines9050530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]