BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mamedov T, Yuksel D, Ilgın M, Gurbuzaslan I, Gulec B, Yetiskin H, Uygut MA, Islam Pavel ST, Ozdarendeli A, Mammadova G, Say D, Hasanova G. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021;13:1595. [PMID: 34452461 DOI: 10.3390/v13081595] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 England C, Trejomartinez J, Perezsanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life 2023;13:617. [DOI: 10.3390/life13030617] [Reference Citation Analysis]
2 Singh R, Lin S, Nair SK, Shi Y, Daniell H. Oral booster vaccine antigen-Expression of full-length native SARS-CoV-2 spike protein in lettuce chloroplasts. Plant Biotechnol J 2022. [PMID: 36577691 DOI: 10.1111/pbi.13993] [Reference Citation Analysis]
3 Margolin E, Schäfer G, Allen JD, Gers S, Woodward J, Sutherland AD, Blumenthal M, Meyers A, Shaw ML, Preiser W, Strasser R, Crispin M, Williamson AL, Rybicki EP, Chapman R. A plant-produced SARS-CoV-2 spike protein elicits heterologous immunity in hamsters. Front Plant Sci 2023;14:1146234. [PMID: 36959936 DOI: 10.3389/fpls.2023.1146234] [Reference Citation Analysis]
4 Mardanova ES, Kotlyarov RY, Stuchinskaya MD, Nikolaeva LI, Zahmanova G, Ravin NV. High-Yield Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope and Receptor Binding Domain of SARS-CoV-2 in Plants Using Viral Vectors. Int J Mol Sci 2022;23. [PMID: 36555326 DOI: 10.3390/ijms232415684] [Reference Citation Analysis]
5 Mardanova ES, Kotlyarov RY, Ravin NV. Rapid Transient Expression of Receptor-Binding Domain of SARS-CoV-2 and the Conserved M2e Peptide of Influenza A Virus Linked to Flagellin in Nicotiana benthamiana Plants Using Self-Replicating Viral Vector. Plants (Basel) 2022;11. [PMID: 36559537 DOI: 10.3390/plants11243425] [Reference Citation Analysis]
6 Fleury H. HIV and SARS-CoV-2 Pathogenesis and Vaccine Development. Viruses 2022;14. [PMID: 36560600 DOI: 10.3390/v14122598] [Reference Citation Analysis]
7 Rebelo BA, Folgado A, Ferreira AC, Abranches R. Production of the SARS-CoV-2 Spike protein and its Receptor Binding Domain in plant cell suspension cultures. Front Plant Sci 2022;13:995429. [DOI: 10.3389/fpls.2022.995429] [Reference Citation Analysis]
8 Balieu J, Jung J, Chan P, Lomonossoff GP, Lerouge P, Bardor M. Investigation of the N-Glycosylation of the SARS-CoV-2 S Protein Contained in VLPs Produced in Nicotiana benthamiana. Molecules 2022;27:5119. [DOI: 10.3390/molecules27165119] [Reference Citation Analysis]
9 Chauhan M, Bhardwaj VK, Kumar A, Kumar V, Kumar P, Enayathullah MG, Thomas J, George J, Kumar BK, Purohit R, Kumar A, Kumar S. Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro. Sci Rep 2022;12:13146. [PMID: 35908093 DOI: 10.1038/s41598-022-17558-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mei X, Gu P, Shen C, Lin X, Li J. Computer-Based Immunoinformatic Analysis to Predict Candidate T-Cell Epitopes for SARS-CoV-2 Vaccine Design. Front Immunol 2022;13:847617. [PMID: 35432316 DOI: 10.3389/fimmu.2022.847617] [Reference Citation Analysis]
11 Ruocco V, Strasser R. Transient Expression of Glycosylated SARS-CoV-2 Antigens in Nicotiana benthamiana. Plants 2022;11:1093. [DOI: 10.3390/plants11081093] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Mamedov T, Yuksel D, Gürbüzaslan I, Ilgın M, Gulec B, Mammadova G, Ozdarendeli A, Pavel STI, Yetiskin H, Kaplan B, Uygut MA, Hasanova G. Plant-produced RBD and cocktail-based vaccine candidates are highly effective against SARS-CoV-2, independently of its emerging variants.. [DOI: 10.1101/2022.04.07.487347] [Reference Citation Analysis]
13 Margolin E, Verbeek M, de Moor W, Chapman R, Meyers A, Schäfer G, Williamson AL, Rybicki E. Investigating Constraints Along the Plant Secretory Pathway to Improve Production of a SARS-CoV-2 Spike Vaccine Candidate. Front Plant Sci 2021;12:798822. [PMID: 35058959 DOI: 10.3389/fpls.2021.798822] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. Front Plant Sci 2021;12:742875. [PMID: 34938305 DOI: 10.3389/fpls.2021.742875] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Mamedov T, Yuksel D, Ilgın M, Gürbüzaslan I, Gulec B, Mammadova G, Ozdarendeli A, Yetiskin H, Kaplan B, Islam Pavel ST, Uygut MA, Hasanova G. Production and Characterization of Nucleocapsid and RBD Cocktail Antigens of SARS-CoV-2 in Nicotiana benthamiana Plant as a Vaccine Candidate against COVID-19. Vaccines (Basel) 2021;9:1337. [PMID: 34835268 DOI: 10.3390/vaccines9111337] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
16 Pavel STI, Yetiskin H, Uygut MA, Aslan AF, Aydın G, İnan Ö, Kaplan B, Ozdarendeli A. Development of an Inactivated Vaccine against SARS CoV-2. Vaccines (Basel) 2021;9:1266. [PMID: 34835197 DOI: 10.3390/vaccines9111266] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
17 Velusamy P, Kiruba K, Su CH, Arun V, Anbu P, Gopinath SCB, Vaseeharan B. SARS-CoV-2 spike protein: Site-specific breakpoints for the development of COVID-19 vaccines. J King Saud Univ Sci 2021;33:101648. [PMID: 34690467 DOI: 10.1016/j.jksus.2021.101648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]