BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumari P, Rothan HA, Natekar JP, Stone S, Pathak H, Strate PG, Arora K, Brinton MA, Kumar M. Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice. Viruses 2021;13:132. [PMID: 33477869 DOI: 10.3390/v13010132] [Cited by in Crossref: 105] [Cited by in F6Publishing: 116] [Article Influence: 52.5] [Reference Citation Analysis]
Number Citing Articles
1 Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023;12:2178242. [PMID: 36748729 DOI: 10.1080/22221751.2023.2178242] [Reference Citation Analysis]
2 Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma S, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023;:105580. [PMID: 36940916 DOI: 10.1016/j.antiviral.2023.105580] [Reference Citation Analysis]
3 Carter B, Huang P, Liu G, Liang Y, Lin PJC, Peng B, Mckay LGA, Dimitrakakis A, Hsu J, Tat V, Saenkham-huntsinger P, Chen J, Kaseke C, Gaiha GD, Xu Q, Griffiths A, Tam YK, Tseng CK, Gifford DK. A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1135815] [Reference Citation Analysis]
4 Ostermann PN, Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol 2023;33:e2430. [PMID: 36790825 DOI: 10.1002/rmv.2430] [Reference Citation Analysis]
5 Chen DY, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O'Connell AK, Adams S, Kotton DN, Herrmann A, Ensser A, Connor JH, Bosmann M, Li JZ, Gack MU, Baker SC, Kirchdoerfer RN, Kataria Y, Crossland NA, Douam F, Saeed M. Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature 2023;615:143-50. [PMID: 36630998 DOI: 10.1038/s41586-023-05697-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Cao L, Guo J, Li H, Ren H, Xiao K, Zhang Y, Zhu S, Song Y, Zhao W, Wu D, Chen Z, Zhang Y, Xia B, Ji T, Yan D, Wang D, Yang Q, Zhou Y, Li X, Hou Z, Xu W. A Beta Strain-Based Spike Glycoprotein Vaccine Candidate Induces Broad Neutralization and Protection against SARS-CoV-2 Variants of Concern. Microbiol Spectr 2023;:e0268722. [PMID: 36847495 DOI: 10.1128/spectrum.02687-22] [Reference Citation Analysis]
7 Thieulent CJ, Dittmar W, Balasuriya UBR, Crossland NA, Wen X, Richt JA, Carossino M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023;8:e0055822. [PMID: 36728430 DOI: 10.1128/msphere.00558-22] [Reference Citation Analysis]
8 Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. Sci Total Environ 2023;859:160163. [PMID: 36395835 DOI: 10.1016/j.scitotenv.2022.160163] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yao XP, Ye J, Feng T, Jiang FC, Zhou P, Wang F, Chen JG, Wu PF. Adaptor protein MyD88 confers the susceptibility to stress via amplifying immune danger signals. Brain Behav Immun 2023;108:204-20. [PMID: 36496170 DOI: 10.1016/j.bbi.2022.12.007] [Reference Citation Analysis]
10 Carpenter KC, Yang J, Xu JJ. Animal Models for the Study of Neurologic Manifestations Of COVID-19. Comp Med 2023;73:91-103. [PMID: 36744556 DOI: 10.30802/AALAS-CM-22-000073] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Villadiego J, García-Arriaza J, Ramírez-Lorca R, García-Swinburn R, Cabello-Rivera D, Rosales-Nieves AE, Álvarez-Vergara MI, Cala-Fernández F, García-Roldán E, López-Ogáyar JL, Zamora C, Astorgano D, Albericio G, Pérez P, Muñoz-Cabello AM, Pascual A, Esteban M, López-Barneo J, Toledo-Aral JJ. Full protection from SARS-CoV-2 brain infection and damage in susceptible transgenic mice conferred by MVA-CoV2-S vaccine candidate. Nat Neurosci 2023;26:226-38. [PMID: 36624276 DOI: 10.1038/s41593-022-01242-y] [Reference Citation Analysis]
12 Gonçalves R, Couto J, Ferreirinha P, Costa JM, Silvério D, Silva ML, Fernandes AI, Madureira P, Alves NL, Lamas S, Saraiva M. SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. iScience 2023;26:105972. [PMID: 36687317 DOI: 10.1016/j.isci.2023.105972] [Reference Citation Analysis]
13 Chen DY, Kenney D, Chin CV, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O'Connell AK, Kotton DN, Herrmann A, Ensser A, Connor JH, Bosmann M, Li JZ, Gack MU, Baker SC, Kirchdoerfer RN, Kataria Y, Crossland NA, Douam F, Saeed M. Role of spike in the pathogenic and antigenic behavior of SARS-CoV-2 BA.1 Omicron. bioRxiv 2023:2022. [PMID: 36263066 DOI: 10.1101/2022.10.13.512134] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
14 Ryabkova VA, Churilov LP. Disease course and pathogenesis of post-COVID-19 condition. Autoimmunity, COVID-19, Post-COVID19 Syndrome and COVID-19 Vaccination 2023. [DOI: 10.1016/b978-0-443-18566-3.00006-2] [Reference Citation Analysis]
15 Saifman J, Colverson A, Prem A, Chomiak J, Doré S. Therapeutic Potential of Music-Based Interventions on the Stress Response and Neuroinflammatory Biomarkers in COVID-19: A Review. Music & Science 2023;6:205920432211358. [DOI: 10.1177/20592043221135808] [Reference Citation Analysis]
16 Koyama S, Mori E, Ueha R. Insight into the mechanisms of olfactory dysfunction by COVID-19. Auris Nasus Larynx 2022:S0385-8146(22)00230-9. [PMID: 36529610 DOI: 10.1016/j.anl.2022.12.002] [Reference Citation Analysis]
17 Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Khurram N, Kanwar Y, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Superiority of intranasal over systemic administration of bioengineered soluble ACE2 for survival and brain protection against SARS-CoV-2 infection.. [DOI: 10.1101/2022.12.05.519032] [Reference Citation Analysis]
18 Badeti S, Jiang Q, Naghizadeh A, Tseng H, Bushkin Y, Marras SAE, Nisa A, Tyagi S, Chen F, Romanienko P, Yehia G, Evans D, Lopez-gonzalez M, Alland D, Russo R, Gause W, Shi L, Liu D. Development of a novel human CD147 knock-in NSG mouse model to test SARS-CoV-2 viral infection. Cell Biosci 2022;12:88. [DOI: 10.1186/s13578-022-00822-6] [Reference Citation Analysis]
19 Taddeo A, Veiga IB, Devisme C, Boss R, Plattet P, Weigang S, Kochs G, Thiel V, Benarafa C, Zimmer G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2. npj Vaccines 2022;7. [DOI: 10.1038/s41541-022-00508-7] [Reference Citation Analysis]
20 Schultz MD, Suschak JJ, Botta D, Silva-Sanchez A, King RG, Detchemendy TW, Meshram CD, Foote JB, Zhou F, Tipper JL, Zhang J, Harrod KS, Leal SM Jr, Randall TD, Roberts MS, Georges B, Lund FE. A single intranasal administration of AdCOVID protects against SARS-CoV-2 infection in the upper and lower respiratory tracts. Hum Vaccin Immunother 2022;18:2127292. [PMID: 36194255 DOI: 10.1080/21645515.2022.2127292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kim S, Kim J, Jang JY, Noh H, Park J, Jeong H, Jeon D, Uhm C, Oh H, Cho K, Jeon Y, On D, Yoon S, Lim S, Kim SP, Lee YW, Jang HJ, Park IH, Oh J, Seo JS, Kim JJ, Seok S, Lee YJ, Hong S, An S, Kim SY, Kim YB, Hwang J, Lee H, Kim HB, Choi K, Park JW, Seo J, Yun J, Shin J, Lee H, Kim K, Lee D, Lee H, Nam KT, Seong JK. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1055811] [Reference Citation Analysis]
22 Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023;47. [PMID: 36323404 DOI: 10.1093/femsre/fuac042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Albornoz EA, Amarilla AA, Modhiran N, Parker S, Li XX, Wijesundara DK, Aguado J, Zamora AP, McMillan CLD, Liang B, Peng NYG, Sng JDJ, Saima FT, Fung JN, Lee JD, Paramitha D, Parry R, Avumegah MS, Isaacs A, Lo MW, Miranda-Chacon Z, Bradshaw D, Salinas-Rebolledo C, Rajapakse NW, Wolvetang EJ, Munro TP, Rojas-Fernandez A, Young PR, Stacey KJ, Khromykh AA, Chappell KJ, Watterson D, Woodruff TM. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry 2022. [PMID: 36316366 DOI: 10.1038/s41380-022-01831-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
24 Peng H, Zheng B, Yang S, Du J, Cao L, Liu L, Ma Z, Wu J, Li C, Zhang H, Guo D. A soluble DR5-Fc chimeric protein attenuates inflammatory responses induced by coronavirus MHV-A59 and SARS-CoV-2. J Med Virol 2022;94:5574-81. [PMID: 35869417 DOI: 10.1002/jmv.28021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Lee S, Yoon GY, Lee SJ, Kwon YC, Moon HW, Kim YJ, Kim H, Lee W, Jeong GU, Kim C, Kim KD, Kim SJ, Ahn DG. Immunological and Pathological Peculiarity of Severe Acute Respiratory Syndrome Coronavirus 2 Beta Variant. Microbiol Spectr 2022;10:e0237122. [PMID: 36005818 DOI: 10.1128/spectrum.02371-22] [Reference Citation Analysis]
26 Lee KS, Russ BP, Wong TY, Horspool AM, Winters MT, Barbier M, Bevere JR, Martinez I, Damron FH, Cyphert HA. Obesity and metabolic dysfunction drive sex-associated differential disease profiles in hACE2-mice challenged with SARS-CoV-2. iScience 2022;25:105038. [PMID: 36068847 DOI: 10.1016/j.isci.2022.105038] [Reference Citation Analysis]
27 Uddin MB, Liang Y, Shao S, Palani S, Mckelvey M, Weaver SC, Sun K. Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion. ImmunoHorizons 2022;6:716-721. [DOI: 10.4049/immunohorizons.2200065] [Reference Citation Analysis]
28 Carter B, Huang P, Liu G, Liang Y, Lin PJ, Peng B, Mckay L, Dimitrakakis A, Hsu J, Tat V, Saenkham-huntsinger P, Chen J, Kaseke C, Gaiha GD, Xu Q, Griffiths A, Tam YK, Tseng CK, Gifford DK. A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta.. [DOI: 10.1101/2022.09.23.509206] [Reference Citation Analysis]
29 Bishop CR, Dumenil T, Rawle DJ, Le TT, Yan K, Tang B, Hartel G, Suhrbier A. Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathog 2022;18:e1010867. [DOI: 10.1371/journal.ppat.1010867] [Reference Citation Analysis]
30 Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer’s disease: mutual risks and mechanisms. Transl Neurodegener 2022;11. [DOI: 10.1186/s40035-022-00316-y] [Reference Citation Analysis]
31 Kiseleva IV, Ksenafontov AD. Rhino- and RS-viruses in the COVID-19 pandemic. Russian Journal of Infection and Immunity 2022;12:624-638. [DOI: 10.15789/2220-7619-rar-1826] [Reference Citation Analysis]
32 Jansen EB, Orvold SN, Swan CL, Yourkowski A, Thivierge BM, Francis ME, Ge A, Rioux M, Darbellay J, Howland JG, Kelvin AA. After the virus has cleared—Can preclinical models be employed for Long COVID research? PLoS Pathog 2022;18:e1010741. [DOI: 10.1371/journal.ppat.1010741] [Reference Citation Analysis]
33 Rodrigues PB, Gomes GF, Angelim MKSC, Souza GF, Muraro SP, Toledo-teixeira DA, Rattis BAC, Passos AS, Pral LP, de Rezende Rodovalho V, dos Santos P. Gomes AB, Matheus VA, Antunes ASLM, Crunfli F, Antunes KH, de Souza APD, Consonni SR, Leiria LO, Alves-filho JC, Cunha TM, Moraes-vieira PMM, Proença-módena JL, R. Vinolo MA. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice. Cells 2022;11:2572. [DOI: 10.3390/cells11162572] [Reference Citation Analysis]
34 Zingaropoli MA, Iannetta M, Piermatteo L, Pasculli P, Latronico T, Mazzuti L, Campogiani L, Duca L, Ferraguti G, De Michele M, Galardo G, Pugliese F, Antonelli G, Andreoni M, Sarmati L, Lichtner M, Turriziani O, Ceccherini-silberstein F, Liuzzi GM, Mastroianni CM, Ciardi MR. Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022;11:2480. [DOI: 10.3390/cells11162480] [Reference Citation Analysis]
35 Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PNP, Kakutani LM, West AP Jr, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 2022;377:eabq0839. [PMID: 35857620 DOI: 10.1126/science.abq0839] [Cited by in Crossref: 44] [Cited by in F6Publishing: 10] [Article Influence: 44.0] [Reference Citation Analysis]
36 Seo S, Son JH, Lee J, Kim N, Yoo E, Kang A, Jang JY, On DI, Noh HA, Yun J, Park JW, Choi K, Lee H, Shin J, Seo J, Nam KT, Lee H, Seong JK, Choi Y. Development of transgenic models susceptible and resistant to SARS-CoV-2 infection in FVB background mice. PLoS ONE 2022;17:e0272019. [DOI: 10.1371/journal.pone.0272019] [Reference Citation Analysis]
37 Oka N, Shimada K, Ishii A, Kobayashi N, Kondo K. SARS-CoV-2 causes brain inflammation via impaired neuro-immune interactions.. [DOI: 10.1101/2022.07.13.499991] [Reference Citation Analysis]
38 Silva BM, Veras FP, Gomes GF, Cambier S, Silva GVL, Quadros AU, Caetité DB, Nascimento DC, Silva CM, Silva JC, Damasceno S, Schneider AH, Beretta F, Batah SS, Castro IMS, Paiva IM, Rodrigues T, Salina A, Martins R, Cebinelli GC, Bibo NL, Jorge DM, Nakaya HI, Zamboni DS, Leiria LO, Fabro AT, Alves-filho JC, Arruda E, Louzada-junior P, Oliveira RD, Cunha LD, Mol PV, Vanderbeke L, Feys S, Wauters E, Brandolini L, Cunha FQ, Köhl J, Allegretti M, Lambrechts D, Wauters J, Proost P, Cunha TM. Targeting C5aR1 signaling reduced neutrophil extracellular traps and ameliorates COVID-19 pathology.. [DOI: 10.1101/2022.07.03.498624] [Reference Citation Analysis]
39 Dedoni S, Avdoshina V, Camoglio C, Siddi C, Fratta W, Scherma M, Fadda P. K18- and CAG-hACE2 Transgenic Mouse Models and SARS-CoV-2: Implications for Neurodegeneration Research. Molecules 2022;27:4142. [DOI: 10.3390/molecules27134142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Dubuc I, Prunier J, Lacasse É, Gravel A, Puhm F, Allaeys I, Archambault A, Gudimard L, Villano R, Droit A, Flamand N, Boilard É, Flamand L. Cytokines and Lipid Mediators of Inflammation in Lungs of SARS-CoV-2 Infected Mice. Front Immunol 2022;13:893792. [DOI: 10.3389/fimmu.2022.893792] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Zhang W, Golynker I, Brosh R, Wudzinska AM, Zhu Y, Carrau L, Damani-yokota P, Khairallah C, Chalhoub N, Huang E, Ashe H, Khanna KM, Maurano MT, Kim SY, tenOever BR, Boeke JD. Mouse genomic rewriting and tailoring: synthetic Trp53 and humanized ACE2.. [DOI: 10.1101/2022.06.22.495814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Holdsworth DA, Chamley R, Barker-Davies R, O'Sullivan O, Ladlow P, Mitchell JL, Dewson D, Mills D, May SLJ, Cranley M, Xie C, Sellon E, Mulae J, Naylor J, Raman B, Talbot NP, Rider OJ, Bennett AN, Nicol ED. Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS One 2022;17:e0267392. [PMID: 35687603 DOI: 10.1371/journal.pone.0267392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Taddeo A, Veiga IB, Devisme C, Boss R, Plattet P, Weigang S, Kochs G, Thiel V, Benarafa C, Zimmer G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior protective humoral immune response to SARS-CoV-2.. [DOI: 10.1101/2022.06.14.495413] [Reference Citation Analysis]
44 Zhang Y, Chen X, Jia L, Zhang Y. Potential mechanism of SARS-CoV-2-associated central and peripheral nervous system impairment. Acta Neurol Scand 2022. [PMID: 35699161 DOI: 10.1111/ane.13657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Chandrasekar SS, Phanse Y, Riel M, Hildebrand RE, Hanafy M, Osorio JE, Abdelgayed SS, Talaat AM. Systemic Neutralizing Antibodies and Local Immune Responses Are Critical for the Control of SARS-CoV-2. Viruses 2022;14:1262. [PMID: 35746733 DOI: 10.3390/v14061262] [Reference Citation Analysis]
46 Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022;8:1147-60. [PMID: 35609344 DOI: 10.1021/acsinfecdis.2c00091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Natekar JP, Pathak H, Stone S, Kumari P, Sharma S, Auroni TT, Arora K, Rothan HA, Kumar M. Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses 2022;14:1139. [PMID: 35746611 DOI: 10.3390/v14061139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
48 Guimond SE, Mycroft-West CJ, Gandhi NS, Tree JA, Le TT, Spalluto CM, Humbert MV, Buttigieg KR, Coombes N, Elmore MJ, Wand M, Nyström K, Said J, Setoh YX, Amarilla AA, Modhiran N, Sng JDJ, Chhabra M, Young PR, Rawle DJ, Lima MA, Yates EA, Karlsson R, Miller RL, Chen YH, Bagdonaite I, Yang Z, Stewart J, Nguyen D, Laidlaw S, Hammond E, Dredge K, Wilkinson TMA, Watterson D, Khromykh AA, Suhrbier A, Carroll MW, Trybala E, Bergström T, Ferro V, Skidmore MA, Turnbull JE. Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike-ACE2 Interaction. ACS Cent Sci 2022;8:527-45. [PMID: 35647275 DOI: 10.1021/acscentsci.1c01293] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
49 Butardo ND, Coronel MFD, Dino AMO, Mendoza TRF, Sto. Domingo OKD, Regencia ZJG, Dominguez JC, Baja ES, Ligsay AD. Clearing the Fog: A Systematic Review on Cognitive Dysfunction in COVID-19.. [DOI: 10.1101/2022.05.24.22275552] [Reference Citation Analysis]
50 Joyce JD, Moore GA, Goswami P, Leslie EH, Thompson CK, Bertke AS. SARS-CoV-2 Infects Peripheral and Central Neurons of Mice Before Viremia, Facilitated by Neuropilin-1.. [DOI: 10.1101/2022.05.20.492834] [Reference Citation Analysis]
51 Dunai C, Collie C, Michael BD. Immune-Mediated Mechanisms of COVID-19 Neuropathology. Front Neurol 2022;13:882905. [DOI: 10.3389/fneur.2022.882905] [Reference Citation Analysis]
52 Cao L, Li Y, Yang S, Li G, Zhou Q, Sun J, Xu T, Yang Y, Liao R, Shi Y, Yang Y, Zhu T, Huang S, Ji Y, Cong F, Luo Y, Zhu Y, Luan H, Zhang H, Chen J, Liu X, Luo R, Liu L, Wang P, Yu Y, Xing F, Ke B, Zheng H, Deng X, Zhang W, Lin C, Shi M, Li CM, Zhang Y, Zhang L, Dai J, Lu H, Zhao J, Zhang X, Guo D. The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Sci Transl Med 2022;:eabm7621. [PMID: 35579533 DOI: 10.1126/scitranslmed.abm7621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Menéndez SG, Martín Giménez VM, Holick MF, Barrantes FJ, Manucha W. COVID-19 and neurological sequelae: Vitamin D as a possible neuroprotective and/or neuroreparative agent. Life Sci 2022;297:120464. [PMID: 35271880 DOI: 10.1016/j.lfs.2022.120464] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
54 Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, Wunderlin-giuliani S, Hughes GL, Patterson EI, Michael BD, Owen A, Hiscox JA, Stewart JP, Kipar A. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022;14:1020. [DOI: 10.3390/v14051020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
55 Wielgat P, Narejko K, Car H. SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Cells 2022;11:1458. [DOI: 10.3390/cells11091458] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
56 Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022;13:783251. [DOI: 10.3389/fphys.2022.783251] [Reference Citation Analysis]
57 Bar-On L, Aftalion M, Makdasi E, Gur D, Alcalay R, Cohen H, Beth-Din A, Rosenfeld R, Achdout H, Bar-Haim E, Falach R, Chitlaru T, Cohen O. Prolonged Protective Immunity Induced by Mild SARS-CoV-2 Infection of K18-hACE2 Mice. Vaccines (Basel) 2022;10:613. [PMID: 35455362 DOI: 10.3390/vaccines10040613] [Reference Citation Analysis]
58 Ludhiadch A, Paul SR, Khan R, Munshi A. COVID-19 induced ischemic stroke and mechanisms of viral entry in brain and clot formation: a systematic review and current update. Int J Neurosci 2022;:1-14. [PMID: 35412938 DOI: 10.1080/00207454.2022.2056460] [Reference Citation Analysis]
59 Natekar JP, Pathak H, Stone S, Kumari P, Sharma S, Arora K, Rothan HA, Kumar M. Differential pathogenesis of SARS-CoV-2 variants of concern in human ACE2-expressing mice.. [DOI: 10.1101/2022.04.04.486975] [Reference Citation Analysis]
60 Choudhary S, Kanevsky I, Yildiz S, Sellers RS, Swanson KA, Franks T, Rathnasinghe R, Munoz-Moreno R, Jangra S, Gonzalez O, Meade P, Coskran T, Qian J, Lanz TA, Johnson JG, Tierney CA, Smith JD, Tompkins K, Illenberger A, Corts P, Ciolino T, Dormitzer PR, Dick EJ Jr, Shivanna V, Hall-Ursone S, Cole J, Kaushal D, Fontenot JA, Martinez-Romero C, McMahon M, Krammer F, Schotsaert M, García-Sastre A. Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models. Toxicol Pathol 2022;50:280-93. [PMID: 35128980 DOI: 10.1177/01926233211072767] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
61 Kheshtchin N, Bakhshi P, Arab S, Nourizadeh M. Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology 2022;105:108531. [DOI: 10.1016/j.intimp.2022.108531] [Reference Citation Analysis]
62 Cárdenas G, Fragoso G, Sciutto E. Neuroinflammation in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection: Pathogenesis and clinical manifestations. Curr Opin Pharmacol 2022;63:102181. [PMID: 35074661 DOI: 10.1016/j.coph.2021.12.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
63 Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PNP, Kakutani LM, West AP Jr, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models. bioRxiv 2022:2022. [PMID: 35378752 DOI: 10.1101/2022.03.25.485875] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Wong TY, Lee KS, Russ BP, Horspool AM, Kang J, Winters MT, Allison Wolf M, Rader NA, Miller OA, Shiflett M, Izac J, Varisco D, Sen-kilic E, Cunningham C, Cooper M, Cyphert HA, Barbier M, Martinez I, Bevere JR, Ernst RK, Damron FH. Intranasal administration of BReC-CoV-2 COVID-19 vaccine protects K18-hACE2 mice against lethal SARS-CoV-2 challenge. npj Vaccines 2022;7. [DOI: 10.1038/s41541-022-00451-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
65 Carossino M, Kenney D, O'Connell AK, Montanaro P, Tseng AE, Gertje HP, Grosz KA, Ericsson M, Huber BR, Kurnick SA, Subramaniam S, Kirkland TA, Walker JR, Francis KP, Klose AD, Paragas N, Bosmann M, Saeed M, Balasuriya UBR, Douam F, Crossland NA. Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses 2022;14:535. [PMID: 35336942 DOI: 10.3390/v14030535] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 24.0] [Reference Citation Analysis]
66 Martins M, Boggiatto PM, Buckley A, Cassmann ED, Falkenberg S, Caserta LC, Fernandes MHV, Kanipe C, Lager K, Palmer MV, Diel DG. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog 2022;18:e1010197. [PMID: 35312736 DOI: 10.1371/journal.ppat.1010197] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
67 Bishop CR, Dumenil T, Rawle DJ, Le TT, Yan K, Tang B, Hartel G, Suhrbier A. Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression.. [DOI: 10.1101/2022.02.24.481866] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Dorman LC, Nguyen PT, Escoubas CC, Vainchtein ID, Xiao Y, Lidsky PV, Nakajo H, Silva NJ, Lagares-Linares C, Wang EY, Taloma SE, Cuevas B, Nakao-Inoue H, Rivera BM, Schwer B, Condello C, Andino R, Nowakowski TJ, Molofsky AV. A type I interferon response defines a conserved microglial state required for effective neuronal phagocytosis. bioRxiv 2022:2021. [PMID: 35233577 DOI: 10.1101/2021.04.29.441889] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
69 Rothan HA, Kumari P, Stone S, Natekar JP, Arora K, Auroni TT, Kumar M. SARS-CoV-2 Infects Primary Neurons from Human ACE2 Expressing Mice and Upregulates Genes Involved in the Inflammatory and Necroptotic Pathways. Pathogens 2022;11:257. [DOI: 10.3390/pathogens11020257] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
70 Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, Han Y, Qin C. Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. Vet Pathol. [DOI: 10.1177/03009858211071016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
71 Fumagalli V, Ravà M, Marotta D, Di Lucia P, Laura C, Sala E, Grillo M, Bono E, Giustini L, Perucchini C, Mainetti M, Sessa A, Garcia-Manteiga JM, Donnici L, Manganaro L, Delbue S, Broccoli V, De Francesco R, D'Adamo P, Kuka M, Guidotti LG, Iannacone M. Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Sci Immunol 2022;7:eabl9929. [PMID: 34812647 DOI: 10.1126/sciimmunol.abl9929] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 23.0] [Reference Citation Analysis]
72 Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022;7:e155896. [DOI: 10.1172/jci.insight.155896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
73 Albornoz E, Amarilla AA, Modhiran N, Parker S, Li XX, Wijesundara DK, Zamora AP, Mcmillan CL, Liang B, Peng NY, Sng JD, Saima FT, Paramitha D, Parry R, Avumegah MS, Isaacs A, Lo M, Miranda-chacon Z, Bradshaw D, Salinas-rebolledo C, Rajapakse NW, Munro T, Rojas-fernandez A, Young PR, Stacey KJ, Khromykh AA, Chappell KJ, Watterson D, Woodruff TM. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike-ACE2 receptor interaction.. [DOI: 10.1101/2022.01.11.475947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Savostyanov V, Kobelev A, Kudashov I. Comprehensive Biotechnical System for Screening Risk-based Diagnosis of COVID-19 and Post-COVID Syndrome. J Electr Bioimpedance 2022;13:45-53. [PMID: 36196240 DOI: 10.2478/joeb-2022-0008] [Reference Citation Analysis]
75 Büttiker P, Stefano GB, Weissenberger S, Ptacek R, Anders M, Raboch J, Kream RM. HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae. Neuropsychiatr Dis Treat 2022;18:2229-37. [PMID: 36221293 DOI: 10.2147/NDT.S382308] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Zarifkar P, Peinkhofer C, Kondziella D. COVID-19 and the developing brain. Reference Module in Biomedical Sciences 2022. [DOI: 10.1016/b978-0-12-818872-9.00130-8] [Reference Citation Analysis]
77 Lee KS, Wong TY, Russ BP, Horspool AM, Miller OA, Rader NA, Givi JP, Winters MT, Wong ZYA, Cyphert HA, Denvir J, Stoilov P, Barbier M, Roan NR, Amin MS, Martinez I, Bevere JR, Damron FH. SARS-CoV-2 Delta variant induces enhanced pathology and inflammatory responses in K18-hACE2 mice. PLoS One 2022;17:e0273430. [PMID: 36037222 DOI: 10.1371/journal.pone.0273430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Vidal E, López-Figueroa C, Rodon J, Pérez M, Brustolin M, Cantero G, Guallar V, Izquierdo-Useros N, Carrillo J, Blanco J, Clotet B, Vergara-Alert J, Segalés J. Chronological brain lesions after SARS-CoV-2 infection in hACE2-transgenic mice. Vet Pathol 2021;:3009858211066841. [PMID: 34955064 DOI: 10.1177/03009858211066841] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
79 Stone S, Rothan HA, Natekar JP, Kumari P, Sharma S, Pathak H, Arora K, Auroni TT, Kumar M. SARS-CoV-2 Variants of Concern Infect the Respiratory Tract and Induce Inflammatory Response in Wild-Type Laboratory Mice. Viruses 2021;14. [PMID: 35062231 DOI: 10.3390/v14010027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
80 Martins M, Boggiatto PM, Buckley A, Cassmann ED, Falkenberg S, Caserta LC, Fernandes MH, Kanipe C, Lager K, Palmer MV, Diel DG. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer.. [DOI: 10.1101/2021.12.14.472547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Almeida GM, Souza JP, Mendes ND, Pontelli MC, Pinheiro NR, Nogueira GO, Cardoso RS, Paiva IM, Ferrari GD, Veras FP, Cunha FQ, Horta-Junior JAC, Alberici LC, Cunha TM, Podolsky-Gondim GG, Neder L, Arruda E, Sebollela A. Neural Infection by Oropouche Virus in Adult Human Brain Slices Induces an Inflammatory and Toxic Response. Front Neurosci 2021;15:674576. [PMID: 34887719 DOI: 10.3389/fnins.2021.674576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
82 Tang AT, Buchholz DW, Szigety KM, Imbhiaka B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-ishizuka P, Adrian Leu N, Sterling S, Monreal IA, Sahler J, August A, Zhu X, Jurado KA, Xu M, Morrisey EE, Millar SE, Aguilar HC, Kahn ML. SARS-CoV-2 infection of olfactory epithelial cells and neurons drives acute lung injury and lethal COVID-19 in mice.. [DOI: 10.1101/2021.12.04.471245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
83 Gruber AD, Firsching TC, Trimpert J, Dietert K. Hamster models of COVID-19 pneumonia reviewed: How human can they be? Vet Pathol 2021;:3009858211057197. [PMID: 34856819 DOI: 10.1177/03009858211057197] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
84 Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021;6:406. [PMID: 34815399 DOI: 10.1038/s41392-021-00818-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 21.0] [Reference Citation Analysis]
85 Olivarria GM, Cheng Y, Furman S, Pachow C, Hohsfield LA, Smith-geater C, Miramontes R, Wu J, Burns MS, Tsourmas KI, Stocksdale J, Manlapaz C, Yong WH, Teijaro J, Edwards R, Green KN, Thompson LM, Lane TE. Microglia do not restrict SARS-CoV-2 replication following infection of the central nervous system of K18-hACE2 transgenic mice.. [DOI: 10.1101/2021.11.15.468761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (2020) 2021. [PMID: 34909757 DOI: 10.1002/mco2.98] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
87 Liang F, Wang Y. COVID-19 Anosmia: High Prevalence, Plural Neuropathogenic Mechanisms, and Scarce Neurotropism of SARS-CoV-2? Viruses 2021;13:2225. [PMID: 34835030 DOI: 10.3390/v13112225] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
88 van Oosten L, Altenburg JJ, Fougeroux C, Geertsema C, van den End F, Evers WAC, Westphal AH, Lindhoud S, van den Berg W, Swarts DC, Deurhof L, Suhrbier A, Le TT, Torres Morales S, Myeni SK, Kikkert M, Sander AF, de Jongh WA, Dagil R, Nielsen MA, Salanti A, Søgaard M, Keijzer TMP, Weijers D, Eppink MHM, Wijffels RH, van Oers MM, Martens DE, Pijlman GP. Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. mBio 2021;12:e0181321. [PMID: 34634927 DOI: 10.1128/mBio.01813-21] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
89 Tan LY, Komarasamy TV, Rmt Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front Immunol 2021;12:742941. [PMID: 34659238 DOI: 10.3389/fimmu.2021.742941] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
90 Wu SY, Chen YL, Lee YR, Lin CF, Lan SH, Lan KY, Chu ML, Lin PW, Yang ZL, Chen YH, Wang WH, Liu HS. The Autophagosomes Containing Dengue Virus Proteins and Full-Length Genomic RNA Are Infectious. Viruses 2021;13:2034. [PMID: 34696464 DOI: 10.3390/v13102034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Asaka MN, Utsumi D, Kamada H, Nagata S, Nakachi Y, Yamaguchi T, Kawaoka Y, Kuba K, Yasutomi Y. Highly susceptible SARS-CoV-2 model in CAG promoter-driven hACE2-transgenic mice. JCI Insight 2021;6:e152529. [PMID: 34463644 DOI: 10.1172/jci.insight.152529] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
92 Pilicheva B, Boyuklieva R. Can the Nasal Cavity Help Tackle COVID-19? Pharmaceutics 2021;13:1612. [PMID: 34683904 DOI: 10.3390/pharmaceutics13101612] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
93 Stone S, Rothan HA, Natekar JP, Kumari P, Sharma S, Pathak H, Arora K, Auroni TT, Kumar M. SARS-CoV-2 variants of concern infect the respiratory tract and induce inflammatory response in wild-type laboratory mice.. [DOI: 10.1101/2021.09.29.462373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
94 Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, Liu N, Wang F, Liu J, Xie Y. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Front Microbiol 2021;12:626553. [PMID: 34531831 DOI: 10.3389/fmicb.2021.626553] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 19.5] [Reference Citation Analysis]
95 Dangi T, Class J, Palacio N, Richner JM, Penaloza MacMaster P. Combining spike- and nucleocapsid-based vaccines improves distal control of SARS-CoV-2. Cell Rep 2021;36:109664. [PMID: 34450033 DOI: 10.1016/j.celrep.2021.109664] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 23.0] [Reference Citation Analysis]
96 Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJ, Ohradanova-repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S. ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology.. [DOI: 10.1101/2021.08.09.455606] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Fumagalli V, Ravà M, Marotta D, Di Lucia P, Laura C, Sala E, Grillo M, Bono E, Giustini L, Perucchini C, Mainetti M, Sessa A, Garcia-manteiga JM, Donnici L, Manganaro L, Delbue S, Broccoli V, De Francesco R, D’adamo P, Kuka M, Guidotti LG, Iannacone M. Controlled administration of aerosolized SARS-CoV-2 to K18-hACE2 transgenic mice uncouples respiratory infection and anosmia from fatal neuroinvasion.. [DOI: 10.1101/2021.08.06.455382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Kiseleva I, Ksenafontov A. COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. Biology (Basel) 2021;10:733. [PMID: 34439965 DOI: 10.3390/biology10080733] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
99 Roe K. A role for T-cell exhaustion in Long COVID-19 and severe outcomes for several categories of COVID-19 patients. J Neurosci Res 2021. [PMID: 34288064 DOI: 10.1002/jnr.24917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
100 Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, Currey JM, Iwanaga N, He J, Mi R, Han K, Midkiff CC, Alam MA, Aktas BH, Heide RSV, Veazey R, Piedimonte G, Maness NJ, Ergün S, Mauvais-Jarvis F, Rappaport J, Kolls JK, Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 2021;11:8076-91. [PMID: 34335981 DOI: 10.7150/thno.61810] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
101 Rawle DJ, Le TT, Dumenil T, Yan K, Tang B, Nguyen W, Watterson D, Modhiran N, Hobson-Peters J, Bishop C, Suhrbier A. ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathog 2021;17:e1009723. [PMID: 34214142 DOI: 10.1371/journal.ppat.1009723] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
102 Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. J Neurosci 2021;41:5338-49. [PMID: 34162747 DOI: 10.1523/JNEUROSCI.3188-20.2021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
103 Ricciardiello F, Pisani D, Viola P, Cristiano E, Scarpa A, Giannone A, Longo G, Russo G, Bocchetti M, Coppola C, Perrella M, Oliva F, Chiarella G. Sudden Sensorineural Hearing Loss in Mild COVID-19: Case Series and Analysis of the Literature. Audiol Res 2021;11:313-26. [PMID: 34287226 DOI: 10.3390/audiolres11030029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
104 Khasanova DR, Zhitkova YV, Vaskaeva GR. Post-covid syndrome: a review of pathophysiology, neuropsychiatric manifestations and treatment perspectives. RJTAO 2021;13:93-8. [DOI: 10.14412/2074-2711-2021-3-93-98] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
105 Renn M, Bartok E, Zillinger T, Hartmann G, Behrendt R. Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. Pharmacol Ther 2021;228:107931. [PMID: 34171328 DOI: 10.1016/j.pharmthera.2021.107931] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
106 Sepehrinezhad A, Rezaeitalab F, Shahbazi A, Sahab-Negah S. A Computational-Based Drug Repurposing Method Targeting SARS-CoV-2 and its Neurological Manifestations Genes and Signaling Pathways. Bioinform Biol Insights 2021;15:11779322211026728. [PMID: 34211268 DOI: 10.1177/11779322211026728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
107 Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021;10:971. [PMID: 34204362 DOI: 10.3390/antiox10060971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
108 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021;6:233. [PMID: 34117216 DOI: 10.1038/s41392-021-00653-w] [Cited by in Crossref: 129] [Cited by in F6Publishing: 127] [Article Influence: 64.5] [Reference Citation Analysis]
109 Amarilla AA, Sng JDJ, Parry R, Deerain JM, Potter JR, Setoh YX, Rawle DJ, Le TT, Modhiran N, Wang X, Peng NYG, Torres FJ, Pyke A, Harrison JJ, Freney ME, Liang B, McMillan CLD, Cheung STM, Guevara DJDC, Hardy JM, Bettington M, Muller DA, Coulibaly F, Moore F, Hall RA, Young PR, Mackenzie JM, Hobson-Peters J, Suhrbier A, Watterson D, Khromykh AA. A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nat Commun 2021;12:3431. [PMID: 34103499 DOI: 10.1038/s41467-021-23779-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
110 Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021;8:ENEURO. [PMID: 33952614 DOI: 10.1523/ENEURO.0027-21.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
111 Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021;141:809-22. [PMID: 33903954 DOI: 10.1007/s00401-021-02314-2] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 24.0] [Reference Citation Analysis]
112 Bielarz V, Willemart K, Avalosse N, De Swert K, Lotfi R, Lejeune N, Poulain F, Ninanne N, Gilloteaux J, Gillet N, Nicaise C. Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Res 2021;1758:147344. [PMID: 33556379 DOI: 10.1016/j.brainres.2021.147344] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
113 Saini G, Aneja R. Cancer as a prospective sequela of long COVID-19. Bioessays 2021;43:e2000331. [PMID: 33914346 DOI: 10.1002/bies.202000331] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
114 Kincaid KJ, Kung JC, Senetar AJ, Mendoza D, Bonnin DA, Purtlebaugh WL, Cabatbat RM, Dickens R, Echevarria FD, Kariyawasam V, Bruzzone M, Simpkins AN. Post-COVID seizure: A new feature of "long-COVID". eNeurologicalSci 2021;23:100340. [PMID: 33898792 DOI: 10.1016/j.ensci.2021.100340] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
115 Class J, Dangi T, Richner JM, Penaloza-macmaster P. A SARS CoV-2 nucleocapsid vaccine protects against distal viral dissemination.. [DOI: 10.1101/2021.04.26.440920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
116 Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, Ding K, Ma C, Li J, Zhao S, Wang H, Li H, Yang M, Xu J, Wang J, Yang J, Kuang D, Luo F, Qian X, Xu L, Yin B, Liu W, Liu H, Lu S, Peng X. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct Target Ther 2021;6:169. [PMID: 33895780 DOI: 10.1038/s41392-021-00591-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 21.0] [Reference Citation Analysis]
117 Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, Giuliani SW, Hughes GL, Patterson EI, Michael BD, Owen A, Hiscox JA, Stewart JP, Kipar A. Neuroinvasion and neurotropism by SARS-CoV-2 variants in the K18-hACE2 mouse.. [DOI: 10.1101/2021.04.16.440173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
118 Duan K, Premi E, Pilotto A, Cristillo V, Benussi A, Libri I, Giunta M, Bockholt HJ, Liu J, Campora R, Pezzini A, Gasparotti R, Magoni M, Padovani A, Calhoun VD. Alterations of frontal-temporal gray matter volume associate with clinical measures of older adults with COVID-19. Neurobiol Stress 2021;14:100326. [PMID: 33869679 DOI: 10.1016/j.ynstr.2021.100326] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
119 Kincaid KJ, Simpkins AN. Failure of Anticoagulation to Prevent Stroke in Context of Lupus-Associated Anti-Phospholipid Syndrome and Mild COVID-19. J Stroke Cerebrovasc Dis 2021;30:105817. [PMID: 33933349 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105817] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
120 Badeti S, Tseng HC, Romanienko P, Yehia G, Liu D. Development of a Novel Human CD147 Transgenic NSG Mouse Model to test SARS-CoV-2 Infection and Immune Responses. Res Sq 2021:rs. [PMID: 33851148 DOI: 10.21203/rs.3.rs-396257/v1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Alonso-Bellido IM, Bachiller S, Vázquez G, Cruz-Hernández L, Martínez E, Ruiz-Mateos E, Deierborg T, Venero JL, Real LM, Ruiz R. The Other Side of SARS-CoV-2 Infection: Neurological Sequelae in Patients. Front Aging Neurosci 2021;13:632673. [PMID: 33889082 DOI: 10.3389/fnagi.2021.632673] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
122 Rothenberger S, Hurdiss DL, Walser M, Malvezzi F, Mayor J, Ryter S, Moreno H, Liechti N, Bosshart A, Iss C, Calabro V, Cornelius A, Hospodarsch T, Neculcea A, Looser T, Schlegel A, Fontaine S, Villemagne D, Paladino M, Kaufmann Y, Schaible D, Schlegel I, Schiegg D, Zitt C, Sigrist G, Straumann M, Sacarcelik F, Wolter J, Comby M, Adler JM, Eschke K, Nascimento M, Abdelgawad A, Gruber AD, Bushe J, Kershaw O, Lyoo H, Wang C, Li W, Drulyte I, Du W, Binz HK, Herrup R, Lusvarghi S, Neerukonda SN, Vassell R, Wang W, Mangold S, Reichen C, Radom F, Knutson CG, Balavenkatraman KK, Ramanathan K, Lewis S, Watson R, Haeuptle MA, Zürcher A, Dawson KM, Steiner D, Weiss CD, Amstutz P, van Kuppeveld FJ, Stumpp MT, Bosch B, Engler O, Trimpert J. Ensovibep, a novel trispecific DARPin candidate that protects against SARS-CoV-2 variants.. [DOI: 10.1101/2021.02.03.429164] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
123 Kanimozhi G, Pradhapsingh B, Singh Pawar C, Khan HA, Alrokayan SH, Prasad NR. SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Front Pharmacol 2021;12:638334. [PMID: 33967772 DOI: 10.3389/fphar.2021.638334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]