BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019;11:E168. [PMID: 30791481 DOI: 10.3390/v11020168] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Malaviya R, Gardner CR, Rancourt RC, Smith LC, Abramova EV, Vayas KN, Gow AJ, Laskin JD, Laskin DL. Lung injury and oxidative stress induced by inhaled chlorine in mice is associated with proinflammatory activation of macrophages and altered bioenergetics. Toxicol Appl Pharmacol 2023;461:116388. [PMID: 36690086 DOI: 10.1016/j.taap.2023.116388] [Reference Citation Analysis]
2 Ghayour AE, Nazari S, Keramat F, Shahbazi F. Evaluation of the recovery rate and prevention of hospitalization among covid-19 outpatients: a randomized clinical trial comparing N-acetylcysteine with Bromhexine.. [DOI: 10.21203/rs.3.rs-2309373/v1] [Reference Citation Analysis]
3 Bilotta MT, Antignani A, Fitzgerald DJ. Managing the TME to improve the efficacy of cancer therapy. Front Immunol 2022;13:954992. [DOI: 10.3389/fimmu.2022.954992] [Reference Citation Analysis]
4 Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW, Karimi K. The Role of Neutrophils in Oncolytic Orf Virus-Mediated Cancer Immunotherapy. Cells 2022;11:2858. [DOI: 10.3390/cells11182858] [Reference Citation Analysis]
5 Guerau-de-arellano M, Piedra-quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol 2022;13:990874. [DOI: 10.3389/fimmu.2022.990874] [Reference Citation Analysis]
6 Liu M, Liu T, Wang X, Yu C, Qin T, Li J, Zhang M, Li Z, Cui X, Xu X, Liu Q. Cangma Huadu granules attenuate H1N1 virus-induced severe lung injury correlated with repressed apoptosis and altered gut microbiome. Front Microbiol 2022;13:947112. [DOI: 10.3389/fmicb.2022.947112] [Reference Citation Analysis]
7 Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022. [PMID: 35876758 DOI: 10.1080/1744666X.2022.2106217] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. IJMS 2022;23:8032. [DOI: 10.3390/ijms23148032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Onisiforou A, Spyrou GM. Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights. Front Immunol 2022;13:843128. [DOI: 10.3389/fimmu.2022.843128] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sharma N, Weivoda MM, Søe K. Functional Heterogeneity Within Osteoclast Populations-a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Curr Osteoporos Rep 2022. [PMID: 35838878 DOI: 10.1007/s11914-022-00738-7] [Reference Citation Analysis]
11 Liu Y, Nicklin P, He Y. New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022;14:1144. [PMID: 35746616 DOI: 10.3390/v14061144] [Reference Citation Analysis]
12 Chitrakar A, Sanz M, Maggirwar SB, Soriano-sarabia N. HIV Latency in Myeloid Cells: Challenges for a Cure. Pathogens 2022;11:611. [DOI: 10.3390/pathogens11060611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Scholz A, DeFalco J, Leung Y, Aydin IT, Czupalla CJ, Cao W, Santos D, Vad N, Lippow SM, Baia G, Harbell M, Sapugay J, Zhang D, Wu DC, Wechsler E, Ye AZ, Wu JW, Peng X, Vivian J, Kaplan H, Collins R, Nguyen N, Whidden M, Kim D, Millward C, Benjamin J, Greenberg NM, Serafini TA, Emerling DE, Steinman L, Robinson WH, Manning-Bog A. Mobilization of innate and adaptive antitumor immune responses by the RNP-targeting antibody ATRC-101. Proc Natl Acad Sci U S A 2022;119:e2123483119. [PMID: 35507878 DOI: 10.1073/pnas.2123483119] [Reference Citation Analysis]
14 Mishra A, Asaf M, Kumar A, Kulkarni DD, Sood R, Bhatia S, Bhushan B, Raut AA. Differential miRNA expression profiling of Highly Pathogenic Avian Influenza Virus H5N1 infected chicken lungs reveals critical microRNAs, biological pathways and genes involved in the molecular pathogenesis. Virol Sin 2022:S1995-820X(22)00058-X. [PMID: 35278696 DOI: 10.1016/j.virs.2022.03.004] [Reference Citation Analysis]
15 Luo K, Chen Y, Wang F. Shrimp Plasma MANF Works as an Invertebrate Anti-Inflammatory Factor via a Conserved Receptor Tyrosine Phosphatase. J I 2022;208:1214-1223. [DOI: 10.4049/jimmunol.2100595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cizmecioglu A, Emsen A, Sumer S, Ergun D, Akay Cizmecioglu H, Turk Dagi H, Artac H. Reduced Monocyte Subsets, Their HLA-DR Expressions, and Relations to Acute Phase Reactants in Severe COVID-19 Cases. Viral Immunol 2022. [PMID: 35196160 DOI: 10.1089/vim.2021.0196] [Reference Citation Analysis]
17 Lee HN, Manangeeswaran M, Lewkowicz AP, Engel K, Chowdhury M, Garige M, Eckhaus MA, Sourbier C, Ireland DD, Verthelyi D. NK cells require immune checkpoint receptor LILRB4/gp49B to control neurotropic Zika virus infections in mice. JCI Insight 2022;7:e151420. [PMID: 35132958 DOI: 10.1172/jci.insight.151420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Howe CL, Lafrance-corey RG, Overlee BL, Johnson RK, Clarkson BDS, Goddery EN. Inflammatory monocytes and microglia play independent roles in inflammatory ictogenesis. J Neuroinflammation 2022;19. [DOI: 10.1186/s12974-022-02394-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Izquierdo JL, Soriano JB, González Y, Lumbreras S, Ancochea J, Echeverry C, Rodríguez JM. Use of N-Acetylcysteine at high doses as an oral treatment for patients hospitalized with COVID-19. Sci Prog 2022;105:368504221074574. [PMID: 35084258 DOI: 10.1177/00368504221074574] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Frasca F, Scordio M, Scagnolari C. MicroRNAs and the immune system. MicroRNA 2022. [DOI: 10.1016/b978-0-323-89774-7.00007-8] [Reference Citation Analysis]
21 O'Neill MB, Quach H, Pothlichet J, Aquino Y, Bisiaux A, Zidane N, Deschamps M, Libri V, Hasan M, Zhang SY, Zhang Q, Matuozzo D, Cobat A, Abel L, Casanova JL, Naffakh N, Rotival M, Quintana-Murci L. Single-Cell and Bulk RNA-Sequencing Reveal Differences in Monocyte Susceptibility to Influenza A Virus Infection Between Africans and Europeans. Front Immunol 2021;12:768189. [PMID: 34912340 DOI: 10.3389/fimmu.2021.768189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
22 Borcherding L, Teksen AS, Grosser B, Schaller T, Hirschbühl K, Claus R, Spring O, Wittmann M, Römmele C, Sipos É, Märkl B. Impaired Dendritic Cell Homing in COVID-19. Front Med (Lausanne) 2021;8:761372. [PMID: 34805226 DOI: 10.3389/fmed.2021.761372] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Kuka M, Iannacone M. Heterogeneity in antiviral B cell responses: Lessons from the movies. Immunol Rev 2021. [PMID: 34811768 DOI: 10.1111/imr.13041] [Reference Citation Analysis]
24 Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L. The Roles of Amphibian (Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. Viruses 2021;13:2299. [PMID: 34835105 DOI: 10.3390/v13112299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Wang G, Guan J, Li G, Wu F, Yang Q, Huang C, Shao J, Xu L, Guo Z, Zhou Q, Zhu H, Chen Z. Effect of ORF7 of SARS-CoV-2 on the Chemotaxis of Monocytes and Neutrophils In Vitro. Dis Markers 2021;2021:6803510. [PMID: 34603560 DOI: 10.1155/2021/6803510] [Reference Citation Analysis]
26 Wang G, Guan J, Li G, Wu F, Yang Q, Huang C, Shao J, Xu L, Guo Z, Zhou Q, Zhu H, Chen Z. Effect of ORF7 of SARS-CoV-2 on the chemotaxis of monocytes and neutrophils in vitro.. [DOI: 10.1101/2021.09.13.460185] [Reference Citation Analysis]
27 Cui SN, Tan HY, Fan GC. Immunopathological Roles of Neutrophils in Virus Infection and COVID-19. Shock 2021;56:345-51. [PMID: 33534399 DOI: 10.1097/SHK.0000000000001740] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
28 Velazquez-Salinas L, Canter JA, Zhu JJ, Rodriguez LL. Molecular Pathogenesis and Immune Evasion of Vesicular Stomatitis New Jersey Virus Inferred from Genes Expression Changes in Infected Porcine Macrophages. Pathogens 2021;10:1134. [PMID: 34578166 DOI: 10.3390/pathogens10091134] [Reference Citation Analysis]
29 Suvarna K, Salkar A, Palanivel V, Bankar R, Banerjee N, Gayathri J Pai M, Srivastava A, Singh A, Khatri H, Agrawal S, Shrivastav O, Shastri J, Srivastava S. A Multi-omics Longitudinal Study Reveals Alteration of the Leukocyte Activation Pathway in COVID-19 Patients. J Proteome Res 2021. [PMID: 34379420 DOI: 10.1021/acs.jproteome.1c00215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
30 Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021;11:717. [PMID: 34357089 DOI: 10.3390/life11070717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Bukkuri A, Adler FR. Viewing Cancer Through the Lens of Corruption: Using Behavioral Ecology to Understand Cancer. Front Ecol Evol 2021;9:678533. [DOI: 10.3389/fevo.2021.678533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Lambour J, Naranjo-Gomez M, Boyer-Clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6Chi inflammatory monocytes during antiviral antibody therapy. Emerg Microbes Infect 2021;10:964-81. [PMID: 33858301 DOI: 10.1080/22221751.2021.1913068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021;22:4726. [PMID: 33946935 DOI: 10.3390/ijms22094726] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
34 Zenarruzabeitia O, Astarloa-Pando G, Terrén I, Orrantia A, Pérez-Garay R, Seijas-Betolaza I, Nieto-Arana J, Imaz-Ayo N, Pérez-Fernández S, Arana-Arri E, Borrego F. T Cell Activation, Highly Armed Cytotoxic Cells and a Shift in Monocytes CD300 Receptors Expression Is Characteristic of Patients With Severe COVID-19. Front Immunol 2021;12:655934. [PMID: 33777054 DOI: 10.3389/fimmu.2021.655934] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
35 Chen S, Kumar S, Espada CE, Tirumuru N, Cahill MP, Hu L, He C, Wu L. N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathog 2021;17:e1009421. [PMID: 33690734 DOI: 10.1371/journal.ppat.1009421] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
36 Zenarruzabeitia O, Astarloa-pando G, Terrén I, Orrantia A, Pérez-garay R, Seijas-betolaza I, Nieto-arana J, Imaz-ayo N, Pérez-fernández S, Arana-arri E, Borrego F. T cell activation, highly armed cytotoxic cells and a sharp shift in monocytes CD300 receptors expression is characteristic of patients with severe COVID-19.. [DOI: 10.1101/2020.12.22.423917] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 O’neill M, Quach H, Pothlichet J, Aquino Y, Bisiaux A, Zidane N, Deschamps M, Libri V, Hasan M, Zhang S, Zhang Q, Matuozzo D, Cobat A, Abel L, Casanova J, Naffakh N, Rotival M, Quintana-murci L. Heterogeneity of monocyte subsets and susceptibility to influenza virus contribute to inter-population variability of protective immunity.. [DOI: 10.1101/2020.12.07.414151] [Reference Citation Analysis]
38 Preiss NK, Kang T, Usherwood YK, Huang YH, Branchini BR, Usherwood EJ. Control of B Cell Lymphoma by Gammaherpesvirus-Induced Memory CD8 T Cells. J Immunol 2020;205:3372-82. [PMID: 33188072 DOI: 10.4049/jimmunol.2000734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Shi Z, Puyo CA. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag 2020;16:1047-55. [PMID: 33177829 DOI: 10.2147/TCRM.S273700] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
40 Rebholz H, Braun RJ, Ladage D, Knoll W, Kleber C, Hassel AW. Loss of Olfactory Function-Early Indicator for Covid-19, Other Viral Infections and Neurodegenerative Disorders. Front Neurol 2020;11:569333. [PMID: 33193009 DOI: 10.3389/fneur.2020.569333] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
41 Klomp M, Ghosh S, Mohammed S, Nadeem Khan M. From virus to inflammation, how influenza promotes lung damage. J Leukoc Biol 2021;110:115-22. [PMID: 32895987 DOI: 10.1002/JLB.4RU0820-232R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
42 Woods Acevedo MA, Pfeiffer JK. Microbiota-immune system interactions and enteric virus infection. Curr Opin Virol 2021;46:15-9. [PMID: 32898729 DOI: 10.1016/j.coviro.2020.08.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Stegelmeier AA, Chan L, Mehrani Y, Petrik JJ, Wootton SK, Bridle B, Karimi K. Characterization of the Impact of Oncolytic Vesicular Stomatitis Virus on the Trafficking, Phenotype, and Antigen Presentation Potential of Neutrophils and Their Ability to Acquire a Non-Structural Viral Protein. Int J Mol Sci 2020;21:E6347. [PMID: 32882969 DOI: 10.3390/ijms21176347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
44 Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020;7:340. [PMID: 32637426 DOI: 10.3389/fvets.2020.00340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Winkler CW, Evans AB, Carmody AB, Peterson KE. Placental Myeloid Cells Protect against Zika Virus Vertical Transmission in a Rag1-Deficient Mouse Model. J Immunol 2020;205:143-52. [PMID: 32493813 DOI: 10.4049/jimmunol.1901289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
46 Autio A, Nevalainen T, Mishra BH, Jylhä M, Flinck H, Hurme M. Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. Immun Ageing 2020;17:11. [PMID: 32435269 DOI: 10.1186/s12979-020-00182-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
47 Malinczak CA, Lukacs NW, Fonseca W. Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases. Viruses 2020;12:E505. [PMID: 32375305 DOI: 10.3390/v12050505] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
48 Lambour J, Naranjo-gomez M, Boyer-clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6Chi inflammatory monocytes during antiviral antibody therapy.. [DOI: 10.1101/2020.04.22.055533] [Reference Citation Analysis]
49 Bieber K, Autenrieth SE. Dendritic cell development in infection. Mol Immunol 2020;121:111-7. [PMID: 32199210 DOI: 10.1016/j.molimm.2020.02.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
50 Bohorquez JA, Muñoz-González S, Pérez-Simó M, Revilla C, Domínguez J, Ganges L. Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses 2019;11:E822. [PMID: 31487968 DOI: 10.3390/v11090822] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
51 Broom LJ. Host⁻Microbe Interactions and Gut Health in Poultry-Focus on Innate Responses. Microorganisms 2019;7:E139. [PMID: 31100860 DOI: 10.3390/microorganisms7050139] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]