BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de-la-Torre R, Oña ED, Balaguer C, Jardón A. Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review. Sensors (Basel) 2020;20:E5251. [PMID: 32937973 DOI: 10.3390/s20185251] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Li L, Han J, Li X, Guo B, Wang X, Du G. A novel end-effector upper limb rehabilitation robot: Kinematics modeling based on dual quaternion and low-speed spiral motion tracking control. International Journal of Advanced Robotic Systems 2022;19:172988062211188. [DOI: 10.1177/17298806221118855] [Reference Citation Analysis]
2 Serrano PA, Criado T, Aranda V, Fernández-pinedo N, Riendas A, Sevilla MM, Zafra C, Calvo-vera A, Calvo-arenillas I. Robotics and Virtual Reality Exer-Games for the Neurorehabilitation of Children and Adults with Traumatic Brain Injury: The IS-BRAIN Model. Engineering Biomaterials for Neural Applications 2022. [DOI: 10.1007/978-3-030-81400-7_10] [Reference Citation Analysis]
3 Oña ED, Casanova A, Gordillo A, Balaguer C, Jardón A. Towards Objective Assessment of Upper Limb Spasticity by Means of Collaborative Robots. Biosystems & Biorobotics 2022. [DOI: 10.1007/978-3-030-70316-5_74] [Reference Citation Analysis]
4 Banica A, Gherman B, Tohanean N, Antal T, Pisla A, Abrudan C, Carbone G, Pisla D. Inverse Dynamic Modeling of a Parallel Elbow Rehabilitation Robot for Spasticity Treatment. Advances in Service and Industrial Robotics 2022. [DOI: 10.1007/978-3-031-04870-8_46] [Reference Citation Analysis]
5 Li W, Xu D. Application of intelligent rehabilitation equipment in occupational therapy for enhancing upper limb function of patients in the whole phase of stroke. Medicine in Novel Technology and Devices 2021;12:100097. [DOI: 10.1016/j.medntd.2021.100097] [Reference Citation Analysis]
6 Sarwat H, Sarwat H, Maged SA, Emara TH, Elbokl AM, Awad MI. Design of a Data Glove for Assessment of Hand Performance Using Supervised Machine Learning. Sensors (Basel) 2021;21:6948. [PMID: 34770255 DOI: 10.3390/s21216948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Moreno-sanjuan V, Cisnal A, Fraile J, Pérez-turiel J, de-la-Fuente E. Design and characterization of a lightweight underactuated RACA hand exoskeleton for neurorehabilitation. Robotics and Autonomous Systems 2021;143:103828. [DOI: 10.1016/j.robot.2021.103828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Wang Y, Wang K, Chai Y, Mo Z, Wang K. Research on mechanical optimization methods of cable-driven lower limb rehabilitation robot. Robotica 2022;40:154-69. [DOI: 10.1017/s0263574721000448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wang YL, Wang KY, Wang KC, Mo ZJ. Safety Evaluation and Experimental Study of a New Bionic Muscle Cable-Driven Lower Limb Rehabilitation Robot. Sensors (Basel) 2020;20:E7020. [PMID: 33302462 DOI: 10.3390/s20247020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]