BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schena E, Tosi D, Saccomandi P, Lewis E, Kim T. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview. Sensors (Basel) 2016;16:E1144. [PMID: 27455273 DOI: 10.3390/s16071144] [Cited by in Crossref: 125] [Cited by in F6Publishing: 74] [Article Influence: 20.8] [Reference Citation Analysis]
Number Citing Articles
1 Hou C, Zhou Z, Yuan Y, Yang J, Liu G, Fu D, Yuan L. Recognition of aliasing fiber-optic vibration signals based on DCN network and FSWD algorithm. Optical Fiber Technology 2022;73:103051. [DOI: 10.1016/j.yofte.2022.103051] [Reference Citation Analysis]
2 Tian X, Wang Y, Zhu D, Shi J. Radio-Frequency Intensity Interrogation for Temperature Measurement. IEEE Photon Technol Lett 2022;34:973-6. [DOI: 10.1109/lpt.2022.3195960] [Reference Citation Analysis]
3 Szczerska M. Temperature Sensors Based on Polymer Fiber Optic Interferometer. Chemosensors 2022;10:228. [DOI: 10.3390/chemosensors10060228] [Reference Citation Analysis]
4 Mishra M, Sahu PK. Fiber Bragg Gratings in Healthcare Applications: A Review. IETE Technical Review. [DOI: 10.1080/02564602.2022.2069608] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Losch MS, Kardux F, Dankelman J, Hendriks BHW. Steering light in fiber-optic medical devices: a patent review. Expert Rev Med Devices 2022;:1-13. [PMID: 35298323 DOI: 10.1080/17434440.2022.2054334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ashikbayeva Z, Aitkulov A, Atabaev TS, Blanc W, Inglezakis VJ, Tosi D. Green-Synthesized Silver Nanoparticle-Assisted Radiofrequency Ablation for Improved Thermal Treatment Distribution. Nanomaterials (Basel) 2022;12:426. [PMID: 35159771 DOI: 10.3390/nano12030426] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Fukano H, Misumi J. Characteristics of rising temperatures through laser irradiation using a temperature sensor integrated optical fiber probe for soft tissue ablation. Sensors and Actuators A: Physical 2022;333:113274. [DOI: 10.1016/j.sna.2021.113274] [Reference Citation Analysis]
8 Park J, Cha DI, Jeong Y, Park H, Lee J, Kang TW, Lim HK, Park I. Real-Time Internal Steam Pop Detection during Radiofrequency Ablation with a Radiofrequency Ablation Needle Integrated with a Temperature and Pressure Sensor: Preclinical and Clinical Pilot Tests. Adv Sci (Weinh) 2021;8:e2100725. [PMID: 34351701 DOI: 10.1002/advs.202100725] [Reference Citation Analysis]
9 Fang Y, Zhang Y, Li Y, Sun J, Zhu M, Deng T. A novel temperature sensor based on three-dimensional buried-gate graphene field effect transistor. Nanotechnology 2021;32. [PMID: 34412038 DOI: 10.1088/1361-6528/ac1f53] [Reference Citation Analysis]
10 Ghahrizjani RT, Ghafarkani M, Janghorban S, Ameri M, Azadinia M, Mohajerani E, Qaryan M, Eslami P, Fouladinasab H. ZnO–SrAl 2 O 4 :Eu Nanocomposite-Based Optical Sensors for Luminescence Thermometry. ACS Appl Nano Mater 2021;4:9190-9. [DOI: 10.1021/acsanm.1c01717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 De Tommasi F, Massaroni C, Grasso RF, Carassiti M, Schena E. Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. Sensors (Basel) 2021;21:5470. [PMID: 34450911 DOI: 10.3390/s21165470] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Hernández-Arenas A, Pimentel-Domínguez R, Rodrigo Vélez-Cordero J, Hernández-Cordero J. Fiber optic probe with functional polymer composites for hyperthermia. Biomed Opt Express 2021;12:4730-44. [PMID: 34513221 DOI: 10.1364/BOE.427585] [Reference Citation Analysis]
13 Naeem ZJ, Salman AM, Faris RA, Al-Janabi A. Highly efficient optical fiber sensor for instantaneous measurement of elevated temperature in dental hard tissues irradiated with an Nd:YaG laser. Appl Opt 2021;60:6189-98. [PMID: 34613285 DOI: 10.1364/AO.431369] [Reference Citation Analysis]
14 Dongaonkar KR, Aoki K, Zwueste D, Bates M. Effect of irrigation technique on the vertebral canal temperature during thoracolumbar hemilaminectomy in dogs: An ex vivo study. Vet Surg 2021;50:1276-82. [PMID: 33959971 DOI: 10.1111/vsu.13654] [Reference Citation Analysis]
15 Prokhorova A, Ley S, Helbig M. Quantitative Interpretation of UWB Radar Images for Non-Invasive Tissue Temperature Estimation during Hyperthermia. Diagnostics (Basel) 2021;11:818. [PMID: 33946581 DOI: 10.3390/diagnostics11050818] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Bianchi L, Korganbayev S, Orrico A, De Landro M, Saccomandi P. Quasi-distributed fiber optic sensor-based control system for interstitial laser ablation of tissue: theoretical and experimental investigations. Biomed Opt Express 2021;12:2841-58. [PMID: 34168905 DOI: 10.1364/BOE.419541] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
17 Shikano A, Tonthat L, Yabukami S. A Simple and High‐Accuracy PID ‐Based Temperature Control System for Magnetic Hyperthermia Using Fiber Optic Thermometer. IEEJ Trans Elec Electron Eng 2021;16:807-9. [DOI: 10.1002/tee.23361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Alqarni SA, Willmore WG, Albert J, Smelser CW. Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro. Appl Opt 2021;60:2400-11. [PMID: 33690341 DOI: 10.1364/AO.411576] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Cano Perez JL, Gutiérrez-Gutiérrez J, Perezcampos Mayoral C, Pérez-Campos EL, Del Socorro Pina Canseco M, Tepech Carrillo L, Mayoral LP, Vargas Treviño M, Apreza EL, Rojas Laguna R. Fiber Optic Sensors: A Review for Glucose Measurement. Biosensors (Basel) 2021;11:61. [PMID: 33669087 DOI: 10.3390/bios11030061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zaltieri M, Massaroni C, Cauti FM, Schena E. Techniques for Temperature Monitoring of Myocardial Tissue Undergoing Radiofrequency Ablation Treatments: An Overview. Sensors (Basel) 2021;21:1453. [PMID: 33669692 DOI: 10.3390/s21041453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
21 Beisenova A, Issatayeva A, Ashikbayeva Z, Jelbuldina M, Aitkulov A, Inglezakis V, Blanc W, Saccomandi P, Molardi C, Tosi D. Distributed Sensing Network Enabled by High-Scattering MgO-Doped Optical Fibers for 3D Temperature Monitoring of Thermal Ablation in Liver Phantom. Sensors (Basel) 2021;21:828. [PMID: 33513666 DOI: 10.3390/s21030828] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Coote JM, Torii R, Desjardins AE. Dynamic Characterisation of Fibre-Optic Temperature Sensors for Physiological Monitoring. Sensors (Basel) 2020;21:E221. [PMID: 33396422 DOI: 10.3390/s21010221] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Al-janabi DI, Salman AM, Al-janabi A. All fiber, highly sensitive sensor based on gold nanoparticle-coated macrobent single mode fiber for human temperature monitoring. J Nanophoton 2020;14. [DOI: 10.1117/1.jnp.14.046013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Zaltieri M, Allegretti G, Massaroni C, Schena E, Cauti FM. Fiber Bragg Grating Sensors for Millimetric-Scale Temperature Monitoring of Cardiac Tissue Undergoing Radiofrequency Ablation: A Feasibility Assessment. Sensors (Basel) 2020;20:E6490. [PMID: 33202980 DOI: 10.3390/s20226490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Korganbayev S, Orrico A, Bianchi L, De Landro M, Wolf A, Dostovalov A, Saccomandi P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue. Sensors (Basel) 2020;20:E6496. [PMID: 33203048 DOI: 10.3390/s20226496] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
26 De Landro M, Ianniello J, Yon M, Wolf A, Quesson B, Schena E, Saccomandi P. Fiber Bragg Grating Sensors for Performance Evaluation of Fast Magnetic Resonance Thermometry on Synthetic Phantom. Sensors (Basel) 2020;20:E6468. [PMID: 33198326 DOI: 10.3390/s20226468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. J Biophotonics 2021;14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Cited by in Crossref: 9] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
28 [DOI: 10.1109/sensors47125.2020.9278580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
29 West CL, Doughty ACV, Liu K, Chen WR. Monitoring tissue temperature during photothermal therapy for cancer. J BioX Res 2019;2:159-68. [PMID: 33088609 DOI: 10.1097/jbr.0000000000000050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
30 Al-janabi DI, Salman AM, Al-janabi A. High-sensitivity balloon-like thermometric sensor based on bent single-mode fiber. Meas Sci Technol 2020;31:115106. [DOI: 10.1088/1361-6501/ab9458] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
31 Morra F, De Landro M, Korganbayev S, Wolf A, Dostovalov A, Cigada A, Saccomandi P. Spatially resolved thermometry during laser ablation in tissues: Distributed and quasi-distributed fiber optic-based sensing. Optical Fiber Technology 2020;58:102295. [DOI: 10.1016/j.yofte.2020.102295] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
32 Ouellette F, Ou Z, Li J. Dual Wavelength Differential Detection of Fiber Bragg Grating Sensors with a Pulsed DFB Laser. Sensors (Basel) 2020;20:E4766. [PMID: 32846881 DOI: 10.3390/s20174766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Huang J, Zeng J, Bai Y, Wang Y, Wang K, Wu X, Cheng Z, Liang D. Real-time monitoring for the CFRP/aluminium-alloy bonding structure during curing process using encapsulated fiber Bragg grating sensor. Optical Fiber Technology 2020;57:102216. [DOI: 10.1016/j.yofte.2020.102216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Garrido I, Lagüela S, Román J, Martín-del Valle E, González-aguilera D. Computation of thermophysical properties for magnetite-based hyperthermia treatment simulations using infrared thermography. International Journal of Heat and Mass Transfer 2020;154:119770. [DOI: 10.1016/j.ijheatmasstransfer.2020.119770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Guo S, Wei S, Lee S, Sheu M, Kang S, Kang JU. Intraoperative Speckle Variance Optical Coherence Tomography for Tissue Temperature Monitoring During Cutaneous Laser Therapy. IEEE J Transl Eng Health Med 2019;7:1800608. [PMID: 32309052 DOI: 10.1109/JTEHM.2019.2943317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
36 Roriz P, Silva S, Frazão O, Novais S. Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors (Basel) 2020;20:E2113. [PMID: 32283622 DOI: 10.3390/s20072113] [Cited by in Crossref: 16] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
37 D'acquisto L, Scardulla F, Pasta S. Steam sterilization processes affect the stability of clinical thermometers: Thermistor and prototypal FBG probe comparison. Optical Fiber Technology 2020;55:102156. [DOI: 10.1016/j.yofte.2020.102156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Paixão T, Pereira L, Min R, Molardi C, Blanc W, Tosi D, Marques C, Antunes P. Bragg gratings and Fabry-Perot interferometers on an Er-MgO-doped optical fiber. Optics & Laser Technology 2020;123:105946. [DOI: 10.1016/j.optlastec.2019.105946] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
39 Franz PL, Wang H. Development of hypothermia measurable fiber radiometric thermometer for thermotherapy. J Biophotonics 2020;13:e201960205. [PMID: 32077211 DOI: 10.1002/jbio.201960205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Franz P, Wang X, Zhu H, Chia R, Hasenberg T, Wang H. Detection of blackbody radiation during fiber guided laser-tissue vaporization. Biomed Opt Express 2020;11:791-800. [PMID: 32206396 DOI: 10.1364/BOE.376141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
41 Bazrafshan B, Koujan A, Hübner F, Leithäuser C, Siedow N, Vogl TJ. A thermometry software tool for monitoring laser-induced interstitial thermotherapy. Biomed Tech (Berl) 2019;64:449-57. [PMID: 30243013 DOI: 10.1515/bmt-2017-0197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Giurazza F, Massaroni C, Silvestri S, Zobel BB, Schena E. Preliminary analysis of ultrasound elastography imaging-based thermometry on non-perfused ex vivo swine liver. J Ultrasound 2020;23:69-75. [PMID: 31541360 DOI: 10.1007/s40477-019-00407-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
43 Zhao L, Han H, Luan N, Liu J, Song L, Hu Y. A Temperature Plasmonic Sensor Based on a Side Opening Hollow Fiber Filled with High Refractive Index Sensing Medium. Sensors (Basel) 2019;19:E3730. [PMID: 31470505 DOI: 10.3390/s19173730] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
44 Coote JM, Alles EJ, Noimark S, Mosse CA, Little CD, Loder CD, David AL, Rakhit RD, Finlay MC, Desjardins AE. Dynamic physiological temperature and pressure sensing with phase-resolved low-coherence interferometry. Opt Express 2019;27:5641-54. [PMID: 30876162 DOI: 10.1364/OE.27.005641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
45 Ley S, Schilling S, Fiser O, Vrba J, Sachs J, Helbig M. Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range. Sensors (Basel) 2019;19:E1707. [PMID: 30974770 DOI: 10.3390/s19071707] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
46 Landa FJO, Penacoba SR, de Espinosa FM, Razansky D, Deán-ben XL. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound. Ultrasonics 2019;94:117-23. [DOI: 10.1016/j.ultras.2018.11.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
47 Noor SFSM, Harun SW, Ahmad H, Muhammad AR. Multimode interference based fiber-optic sensor for temperature measurement. J Phys : Conf Ser 2019;1151:012023. [DOI: 10.1088/1742-6596/1151/1/012023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
48 Beisenova A, Issatayeva A, Sovetov S, Korganbayev S, Jelbuldina M, Ashikbayeva Z, Blanc W, Schena E, Sales S, Molardi C, Tosi D. Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomed Opt Express 2019;10:1282-96. [PMID: 30891346 DOI: 10.1364/BOE.10.001282] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
49 Massaroni C, Nicolò A, Lo Presti D, Sacchetti M, Silvestri S, Schena E. Contact-Based Methods for Measuring Respiratory Rate. Sensors (Basel) 2019;19:E908. [PMID: 30795595 DOI: 10.3390/s19040908] [Cited by in Crossref: 100] [Cited by in F6Publishing: 104] [Article Influence: 33.3] [Reference Citation Analysis]
50 Brites CDS, Balabhadra S, Carlos LD. Lanthanide‐Based Thermometers: At the Cutting‐Edge of Luminescence Thermometry. Advanced Optical Materials 2018;7:1801239. [DOI: 10.1002/adom.201801239] [Cited by in Crossref: 344] [Cited by in F6Publishing: 318] [Article Influence: 86.0] [Reference Citation Analysis]
51 Palumbo G, De Vita E, Schena E, Massaroni C, Verze P, Carlomagno N, Tammaro V, La Rocca R, Ippolito J, Tosi D, Saccomandi P, Caponero MA, Iadicicco A, Campopiano S. Multidimensional thermal mapping during radiofrequency ablation treatments with minimally invasive fiber optic sensors. Biomed Opt Express 2018;9:5891-902. [PMID: 31065401 DOI: 10.1364/BOE.9.005891] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
52 Fu H, Zhang J, Ding J, Wang Q, Li H, Shao M, Liu Y, Liu Q, Zhang M, Zhu Y, Yang C. Ultra sensitive NH 3 gas detection using microfiber Bragg Grating. Optics Communications 2018;427:331-4. [DOI: 10.1016/j.optcom.2018.06.059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
53 Wang S, Lv R, Zhao Y, Qian J. A Mach-Zehnder interferometer-based High Sensitivity Temperature sensor for human body monitoring. Optical Fiber Technology 2018;45:93-7. [DOI: 10.1016/j.yofte.2018.07.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
54 Wales MD, Clark P, Thompson K, Wilson Z, Wilson J, Adams C. Multicore fiber temperature sensor with fast response times. OSA Continuum 2018;1:764. [DOI: 10.1364/osac.1.000764] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
55 Jelbuldina M, Korobeinyk A, Korganbayev S, Tosi D, Dukenbayev K, Inglezakis VJ. Real-Time Temperature Monitoring in Liver During Magnetite Nanoparticle-Enhanced Microwave Ablation With Fiber Bragg Grating Sensors: Ex Vivo]]> Analysis. IEEE Sensors J 2018;18:8005-11. [DOI: 10.1109/jsen.2018.2865100] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
56 Lamien B, Rangel Barreto Orlande H, Antonio Bermeo Varón L, Leite Queiroga Basto R, Enrique Eliçabe G, Silva Dos Santos D, Machado Cotta R. Estimation of the temperature field in laser-induced hyperthermia experiments with a phantom. Int J Hyperthermia 2018;35:279-90. [PMID: 30204008 DOI: 10.1080/02656736.2018.1496283] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
57 Gassino R, Pogliano J, Perrone G, Vallan A. Issues and characterization of fiber Bragg grating based temperature sensors in the presence of thermal gradients. Measurement 2018;124:15-9. [DOI: 10.1016/j.measurement.2018.03.049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
58 Pham NT, Lee SL, Park S, Lee YW, Kang HW. Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy. J Biomed Opt 2017;22:45008. [PMID: 28425558 DOI: 10.1117/1.JBO.22.4.045008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
59 Tosi D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors (Basel) 2018;18:E2147. [PMID: 29973516 DOI: 10.3390/s18072147] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
60 Tosi D, Schena E, Molardi C, Korganbayev S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Optical Fiber Technology 2018;43:6-19. [DOI: 10.1016/j.yofte.2018.03.007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 30] [Article Influence: 15.8] [Reference Citation Analysis]
61 Correia R, James S, Lee S, Morgan SP, Korposh S. Biomedical application of optical fibre sensors. J Opt 2018;20:073003. [DOI: 10.1088/2040-8986/aac68d] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 14.0] [Reference Citation Analysis]
62 Tran VN, Truong VG, Jeong S, Kang HW. Computational analysis of linear energy modulation for laser thermal coagulation. Biomed Opt Express 2018;9:2575-87. [PMID: 30258674 DOI: 10.1364/BOE.9.002575] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
63 Schena E, Tosi D, Saccomandi P, Lewis E, Kim T. Correction: Schena, E.; et al. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: an Overview. Sensors 2016, 16, 1144. Sensors (Basel) 2018;18:E1226. [PMID: 29673158 DOI: 10.3390/s18041226] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Brites CDS, Fiaczyk K, Ramalho JFCB, Sójka M, Carlos LD, Zych E. Widening the Temperature Range of Luminescent Thermometers through the Intra- and Interconfigurational Transitions of Pr 3+. Advanced Optical Materials 2018;6:1701318. [DOI: 10.1002/adom.201701318] [Cited by in Crossref: 104] [Cited by in F6Publishing: 100] [Article Influence: 26.0] [Reference Citation Analysis]
65 Korganbayev S, Orazayev Y, Sovetov S, Bazyl A, Schena E, Massaroni C, Gassino R, Vallan A, Perrone G, Saccomandi P, Arturo Caponero M, Palumbo G, Campopiano S, Iadicicco A, Tosi D. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario. Optical Fiber Technology 2018;41:48-55. [DOI: 10.1016/j.yofte.2017.12.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
66 Saccomandi P, Quero G, Gassino R, Lapergola A, Guerriero L, Diana M, Vallan A, Perrone G, Schena E, Costamagna G, Marescaux J, Di Matteo FM. Laser ablation of the biliary tree: in vivo proof of concept as potential treatment of unresectable cholangiocarcinoma. Int J Hyperthermia 2018;34:1372-80. [PMID: 29322853 DOI: 10.1080/02656736.2018.1427287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
67 Granchi S, Vannacci E, Breschi L, Biagi E. Advantages of cooled fiber for monitoring laser tissue ablation through temporal and spectral analysis of RF ultrasound signal: A case study. Ultrasonics 2018;82:49-56. [DOI: 10.1016/j.ultras.2017.07.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
68 [DOI: 10.1109/icsens.2017.8234119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
69 Saccomandi P, Varalda A, Gassino R, Tosi D, Massaroni C, Caponero MA, Pop R, Korganbayev S, Perrone G, Diana M, Vallan A, Costamagna G, Marescaux J, Schena E. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue. J Biomed Opt 2017;22:1. [DOI: 10.1117/1.jbo.22.9.097002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
70 Liu S, Doughty A, West C, Tang Z, Zhou F, Chen WR. Determination of temperature distribution in tissue for interstitial cancer photothermal therapy. Int J Hyperthermia 2018;34:756-63. [PMID: 28826269 DOI: 10.1080/02656736.2017.1370136] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
71 Bauones S, Garnon J, Chari B, Cazzato RL, Tsoumakidou G, Caudrelier J, Koch G, Gangi A. Protection of the Proximal Articular Cartilage During Percutaneous Thermal Ablation of Acetabular Metastasis Using Temperature Monitoring. Cardiovasc Intervent Radiol 2018;41:163-9. [DOI: 10.1007/s00270-017-1755-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
72 Schena E, Saccomandi P, Fong Y. Laser Ablation for Cancer: Past, Present and Future. J Funct Biomater 2017;8:E19. [PMID: 28613248 DOI: 10.3390/jfb8020019] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 11.4] [Reference Citation Analysis]
73 [DOI: 10.1109/i2mtc.2017.7969742] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
74 Calixto S, Rosete-Aguilar M, Torres-Gomez I. Liquid Temperature Measurements Using Two Different Tunable Hollow Prisms. Sensors (Basel) 2017;17:E266. [PMID: 28146068 DOI: 10.3390/s17020266] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
75 Su H, Iordachita II, Tokuda J, Hata N, Liu X, Seifabadi R, Xu S, Wood B, Fischer GS. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review. IEEE Sens J 2017;17:1952-63. [PMID: 28652857 DOI: 10.1109/JSEN.2017.2654489] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]