BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Laschewsky A. Structures and Synthesis of Zwitterionic Polymers. Polymers 2014;6:1544-601. [DOI: 10.3390/polym6051544] [Cited by in Crossref: 280] [Cited by in F6Publishing: 281] [Article Influence: 31.1] [Reference Citation Analysis]
Number Citing Articles
1 Leiske MN, De Geest BG, Hoogenboom R. Impact of the polymer backbone chemistry on interactions of amino-acid-derived zwitterionic polymers with cells. Bioactive Materials 2023;24:524-534. [DOI: 10.1016/j.bioactmat.2023.01.005] [Reference Citation Analysis]
2 Kirthika S, Goel G, Matthews A, Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector. Progress in Materials Science 2023;133:101065. [DOI: 10.1016/j.pmatsci.2022.101065] [Reference Citation Analysis]
3 Aguiar AO, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. Journal of Membrane Science 2023;669:121253. [DOI: 10.1016/j.memsci.2022.121253] [Reference Citation Analysis]
4 Morozova JE, Gilmullina ZR, Syakaev VV, Voloshina AD, Lyubina AP, Amerhanova SK, Babaeva OB, Babaev VM, Antipin IS. Carboxybetaine and Carboxybetaine Ester Derivatives of Tetra(dodecyloxyphenyl)-calix[4]resorcinarene: Synthesis, Self-Assembly and In Vitro Toxicity. Molbank 2023;2023:M1562. [DOI: 10.3390/m1562] [Reference Citation Analysis]
5 Gussenov IS, Shakhvorostov AV, Mukhametgazy N, Kudaibergenov SE. Synthetic polyampholytes based on acrylamide derivatives – new polymer for enhanced oil recovery. Kazakhstan journal for oil & gas industry 2023;4:104-116. [DOI: 10.54859/kjogi108622] [Reference Citation Analysis]
6 Hosseinnejad A, Ludwig N, Mersmann S, Winnerbach P, Bleilevens C, Rossaint R, Rossaint J, Singh S. Bioactive Nanogels Mimicking the Antithrombogenic Nitric Oxide-Release Function of the Endothelium. Small 2023;:e2205185. [PMID: 36635040 DOI: 10.1002/smll.202205185] [Reference Citation Analysis]
7 Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes (Basel) 2023;13. [PMID: 36676865 DOI: 10.3390/membranes13010058] [Reference Citation Analysis]
8 Hu L, Li J, Wang J, Yang X. Synergistic hydration lubrication of polyurethane meniscus based on zwitterionic structures and hyaluronic acid. Tribology International 2023;179:108167. [DOI: 10.1016/j.triboint.2022.108167] [Reference Citation Analysis]
9 Buback M, Hutchinson RA, Lacík I. Radical polymerization kinetics of water-soluble monomers. Progress in Polymer Science 2023. [DOI: 10.1016/j.progpolymsci.2022.101645] [Reference Citation Analysis]
10 Hu N, Lin L, Metwalli E, Bießmann L, Philipp M, Hildebrand V, Laschewsky A, Papadakis CM, Cubitt R, Zhong Q, Müller‐buschbaum P. Kinetics of Water Transfer Between the LCST and UCST Thermoresponsive Blocks in Diblock Copolymer Thin Films Monitored by In Situ Neutron Reflectivity. Adv Materials Inter 2022. [DOI: 10.1002/admi.202201913] [Reference Citation Analysis]
11 Murali S, Agirre A, Tomovska R. Zwitterionic monomers as stabilizers for high solids content polymer colloids for high-performance coatings applications. Progress in Organic Coatings 2022;173:107196. [DOI: 10.1016/j.porgcoat.2022.107196] [Reference Citation Analysis]
12 Eickenscheidt A, Lavaux V, Paschke S, Martínez AG, Schönemann E, Laschewsky A, Lienkamp K, Staszewski O. Effect of Poly(Oxanorbonene)- and Poly(Methacrylate)-Based Polyzwitterionic Surface Coatings on Cell Adhesion and Gene Expression of Human Keratinocytes. Macromol Biosci 2022;22:e2200225. [PMID: 36200655 DOI: 10.1002/mabi.202200225] [Reference Citation Analysis]
13 Arshad Z, Ali SA. Synthesis and anticorrosive application of biomimetic dopamine-based cationic polyelectrolytes derived from diallylammonium salts. Polymer 2022. [DOI: 10.1016/j.polymer.2022.125537] [Reference Citation Analysis]
14 Karthäuser JF, Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Rosenhahn A, Laschewsky A. Optimizing Fouling Resistance of Poly(Sulfabetaine)s through Backbone and Charge Separation. Adv Materials Inter. [DOI: 10.1002/admi.202200677] [Reference Citation Analysis]
15 Ma Y, Zohaib Aslam M, Wu M, Nitin N, Sun G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Research International 2022;159:111543. [DOI: 10.1016/j.foodres.2022.111543] [Reference Citation Analysis]
16 Nemati Mahand S, Aliakbarzadeh S, Moghaddam A, Salehi Moghaddam A, Kruppke B, Nasrollahzadeh M, Khonakdar HA. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. European Polymer Journal 2022;178:111484. [DOI: 10.1016/j.eurpolymj.2022.111484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Víšová I, Houska M, Spasovová M, Forinová M, Pilipenco A, Mezuláníková K, Tomandlová M, Mrkvová K, Vrabcová M, Dejneka A, Dostálek J, Vaisocherová‐lísalová H. Tuning of Surface Charge of Functionalized Poly(Carboxybetaine) Brushes Can Significantly Improve Label‐Free Biosensing in Complex Media. Adv Materials Inter. [DOI: 10.1002/admi.202201210] [Reference Citation Analysis]
18 Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules. [DOI: 10.1021/acs.macromol.2c01121] [Reference Citation Analysis]
19 Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS Eng Au 2022;2:274-294. [DOI: 10.1021/acsengineeringau.2c00008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Pham TT, Yusa S. Thermo-Responsive Polyion Complex of Polysulfobetaine and a Cationic Surfactant in Water. Polymers 2022;14:3171. [DOI: 10.3390/polym14153171] [Reference Citation Analysis]
21 Bairagi U, Jacob J. Regenerative macroporous polyzwitterionic gels for brackish/sea water desalination. Desalination 2022;535:115801. [DOI: 10.1016/j.desal.2022.115801] [Reference Citation Analysis]
22 Khorate A, Kadam AV. An overview of patents and recent development in flexible supercapacitors. Journal of Energy Storage 2022;52:104887. [DOI: 10.1016/j.est.2022.104887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Ben-hadj-salem J, Touil S, Rouden J, Baudoux J, Lepoittevin B. 2-Hydroxy-3-(1-(4-vinylbenzyl)imidazol-3-ium-3-yl)propane-1-sulfonate and 3-(4-Vinylbenzyl)dimethylammonio)-2-hydroxypropane-1-sulfonate as New Zwitterionic Monomers. Molbank 2022;2022:M1414. [DOI: 10.3390/m1414] [Reference Citation Analysis]
24 Vijayakanth V, Chintagumpala K. A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles. Polym Bull . [DOI: 10.1007/s00289-022-04324-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Clark A, Rosenbaum M, Biswas Y, Asatekin A, Cebe P. Heat capacity and index of refraction of polyzwitterions. Polymer 2022. [DOI: 10.1016/j.polymer.2022.125176] [Reference Citation Analysis]
26 Mkpuma VO, Moheimani NR, Fischer K, Schulze A, Ennaceri H. Membrane surface zwitterionization for an efficient microalgal harvesting: A review. Algal Research 2022;66:102797. [DOI: 10.1016/j.algal.2022.102797] [Reference Citation Analysis]
27 Kumari S, Avais M, Katiyar JD, Suman YK, Chattopadhyay S. Polyethylenimine polyampholytes: Synthesis, characterization and dye adsorption study. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-03074-7] [Reference Citation Analysis]
28 Chang Y. Designs of zwitterionic polymers. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-03041-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ali SA, Yaagoob IY, Al-taq AA, Al-muallem HA, Mazumder MA. An antiscalant with chelating residues of amino acid glycine. Desalination 2022;531:115728. [DOI: 10.1016/j.desal.2022.115728] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. Adv Mater 2022;34:e2109764. [PMID: 35390209 DOI: 10.1002/adma.202109764] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
31 Lounder SJ, Wright PT, Mazzaferro L, Asatekin A. Fouling-Resistant Membranes with Tunable Pore Size Fabricated Using Cross-Linkable Copolymers with High Zwitterion Content. Journal of Membrane Science Letters 2022;2:100019. [DOI: 10.1016/j.memlet.2022.100019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022;302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Bui VT, Abdelrasoul A, Mcmartin DW. Influence of zwitterionic structure design on mixed matrix membrane stability, hydrophilicity, and fouling resistance: A computational study. Journal of Molecular Graphics and Modelling 2022. [DOI: 10.1016/j.jmgm.2022.108187] [Reference Citation Analysis]
34 Pickett PD, Ma Y, Posey ND, Lueckheide M, Prabhu VM. Structure and Phase Behavior of Polyampholytes and Polyzwitterions. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0056] [Reference Citation Analysis]
35 Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Separation and Purification Technology 2022;285:120298. [DOI: 10.1016/j.seppur.2021.120298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
36 Nekrasova T, Nazarova O, Vlasova E, Fischer A, Zolotova Y, Bezrukova M, Panarin E. Interpolymer Complexes of Poly(methacryloyloxyethyl phosphorylcholine) and Polyacids. Polymers 2022;14:407. [DOI: 10.3390/polym14030407] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022;606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Reference Citation Analysis]
39 Kim D, Honda H, Matsuoka H, Yusa S, Saruwatari Y. Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity. Colloid Polym Sci. [DOI: 10.1007/s00396-021-04921-7] [Reference Citation Analysis]
40 Uneputty A, Dávila-lezama A, Garibo D, Oknianska A, Bogdanchikova N, Hernández-sánchez J, Susarrey-arce A. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid and Interface Science Communications 2022;46:100560. [DOI: 10.1016/j.colcom.2021.100560] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
41 Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. Biomedical Engineering Advances 2022. [DOI: 10.1016/j.bea.2022.100026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Liu G, Matindi C, Hu M, Li X, Ma X, Li J. Zwitterion-modified membranes for water reclamation. 60 Years of the Loeb-Sourirajan Membrane 2022. [DOI: 10.1016/b978-0-323-89977-2.00002-6] [Reference Citation Analysis]
43 Poulladofonou G, Neumann K. Poly(sulfur ylides): a new class of zwitterionic polymers with distinct thermal and solution behaviour. Polym Chem 2022;13:4416-20. [DOI: 10.1039/d2py00851c] [Reference Citation Analysis]
44 Pfeifer A, Kemmer A, Heinze T. Synthesis and structure characterization of novel polyampholytes based on cellulose. Advanced Industrial and Engineering Polymer Research 2022;5:26-32. [DOI: 10.1016/j.aiepr.2021.06.001] [Reference Citation Analysis]
45 Ielo I, Giacobello F, Castellano A, Sfameni S, Rando G, Plutino MR. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol-Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2021;8:26. [PMID: 35049561 DOI: 10.3390/gels8010026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Kim D, Matsuoka H, Saruwatari Y. Complex Formation in the Sulfobetaine-Containing Entirely Ionic Block Copolymer/Ionic Homopolymer System and Their Temperature Responsivity. Langmuir 2021;37:14733-43. [PMID: 34875173 DOI: 10.1021/acs.langmuir.1c02664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Hosseinnejad A, Ludwig N, Wienkamp AK, Rimal R, Bleilevens C, Rossaint R, Rossaint J, Singh S. DNase I functional microgels for neutrophil extracellular trap disruption. Biomater Sci 2021;10:85-99. [PMID: 34812809 DOI: 10.1039/d1bm01591e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
48 Bakhti H, Weyrich T, Es-souni M, Laghrissi A, Es-souni M. Non-fouling polymer films on hard-anodized aluminum substrates: Nanomechanical properties and modelling. Progress in Organic Coatings 2021;161:106553. [DOI: 10.1016/j.porgcoat.2021.106553] [Reference Citation Analysis]
49 Hashmi S, Nadeem S, García‐peñas A, Ahmed R, Zahoor A, Vatankhah‐varnoosfaderani M, Stadler FJ. Study the Effects of Supramolecular Interaction on Diffusion Kinetics in Hybrid Hydrogels of Zwitterionic Polymers and CNTs. Macro Chemistry & Physics 2022;223:2100348. [DOI: 10.1002/macp.202100348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Gautam B, Ali SA, Chen JT, Yu HH. Hybrid "Kill and Release" Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl Bio Mater 2021;4:7893-902. [PMID: 35006770 DOI: 10.1021/acsabm.1c00817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Clark A, Biswas Y, Taylor ME, Asatekin A, Panzer MJ, Schick C, Cebe P. Glass-Forming Ability of Polyzwitterions. Macromolecules 2021;54:10126-34. [DOI: 10.1021/acs.macromol.1c01393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. Adv Sci (Weinh) 2021;8:e2004393. [PMID: 34166584 DOI: 10.1002/advs.202004393] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
54 Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. European Polymer Journal 2021;156:110578. [DOI: 10.1016/j.eurpolymj.2021.110578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Han IK, Han J, Kim YS. Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions. Chem Asian J 2021;16:1897-900. [PMID: 34018681 DOI: 10.1002/asia.202100502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Saget M, de Almeida CF, Fierro V, Celzard A, Delaplace G, Thomy V, Coffinier Y, Jimenez M. A critical review on surface modifications mitigating dairy fouling. Compr Rev Food Sci Food Saf 2021;20:4324-66. [PMID: 34250733 DOI: 10.1111/1541-4337.12794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
57 Kudaibergenov SE, Okay O. Behaviors of quenched polyampholytes in solution and gel state. Polym Adv Technol 2021;32:2639-2654. [DOI: 10.1002/pat.5112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Liu B, Li Z, Li D, Sun H, Yao J. Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Separation and Purification Technology 2021;267:118617. [DOI: 10.1016/j.seppur.2021.118617] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
59 Sun Y, Lei K, Lang M. Synthesis, structural characterization, antifouling and antibacterial properties of polypyridinium salt coated silica nanoparticles. Journal of Macromolecular Science, Part A 2021;58:769-77. [DOI: 10.1080/10601325.2021.1936549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Paschke S, Prediger R, Lavaux V, Eickenscheidt A, Lienkamp K. Stimulus-Responsive Polyelectrolyte Surfaces: Switching Surface Properties from Polycationic/Antimicrobial to Polyzwitterionic/Protein-Repellent. Macromol Rapid Commun 2021;42:e2100051. [PMID: 34028928 DOI: 10.1002/marc.202100051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
61 Saha P, Ganguly R, Li X, Das R, Singha NK, Pich A. Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromol Rapid Commun 2021;42:e2100112. [PMID: 34021658 DOI: 10.1002/marc.202100112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
62 Bairagi U, Jacob J. Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. Langmuir 2021;37:5424-35. [PMID: 33891417 DOI: 10.1021/acs.langmuir.1c00888] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
63 Brown MU, Triozzi A, Emrick T. Polymer Zwitterions with Phosphonium Cations. J Am Chem Soc 2021;143:6528-32. [DOI: 10.1021/jacs.1c00793] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
64 Sharker KK, Shigeta Y, Ozoe S, Damsongsang P, Hoven VP, Yusa SI. Upper Critical Solution Temperature Behavior of pH-Responsive Amphoteric Statistical Copolymers in Aqueous Solutions. ACS Omega 2021;6:9153-63. [PMID: 33842784 DOI: 10.1021/acsomega.1c00351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
65 Neitzel AE, De Hoe GX, Tirrell MV. Expanding the structural diversity of polyelectrolyte complexes and polyzwitterions. Current Opinion in Solid State and Materials Science 2021;25:100897. [DOI: 10.1016/j.cossms.2020.100897] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
66 Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021;22:1494-508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
67 Biosca A, Cabanach P, Abdulkarim M, Gumbleton M, Gómez-Canela C, Ramírez M, Bouzón-Arnáiz I, Avalos-Padilla Y, Borros S, Fernàndez-Busquets X. Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment. J Control Release 2021;331:364-75. [PMID: 33497747 DOI: 10.1016/j.jconrel.2021.01.028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
68 Chalony C, Aguilar LE, Kim JY, Park CH, Kim CS. Development of electrospun core-shell polymeric mat using poly (ethyl-2) cyanoacrylate/polyurethane to attenuate biological adhesion on polymeric mesh implants. Mater Sci Eng C Mater Biol Appl 2021;122:111930. [PMID: 33641922 DOI: 10.1016/j.msec.2021.111930] [Reference Citation Analysis]
69 Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. Polym Adv Technol 2021;32:906-18. [DOI: 10.1002/pat.5145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Yang CC, Lo CT, Luo YL, Venault A, Chang Y. Thermally Stable Bioinert Zwitterionic Sulfobetaine Interfaces Tolerated in the Medical Sterilization Process. ACS Biomater Sci Eng 2021;7:1031-45. [PMID: 33591713 DOI: 10.1021/acsbiomaterials.0c01517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
71 Gordievskaya YD, Kramarenko EY. Conformational transitions and helical structures of a dipolar chain in external electric fields. Soft Matter 2021;17:1376-87. [PMID: 33325981 DOI: 10.1039/d0sm01868f] [Reference Citation Analysis]
72 Erfani A, Zarrintaj P, Seaberg J, Ramsey JD, Aichele CP. Zwitterionic poly(carboxybetaine) microgels for enzyme (chymotrypsin) covalent immobilization with extended stability and activity. J Appl Polym Sci 2021;138:50545. [DOI: 10.1002/app.50545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
73 Saha P, Palanisamy AR, Santi M, Ganguly R, Mondal S, Singha NK, Pich A. Thermoresponsive zwitterionic poly(phosphobetaine) microgels: Effect of macro‐RAFT chain length and cross‐linker molecular weight on their antifouling properties. Polym Adv Technol 2021;32:2710-26. [DOI: 10.1002/pat.5214] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
74 Bandi SP, Bhatnagar S, Venuganti VVK. Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021;119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
75 North SM, Armes SP. One-pot synthesis and aqueous solution properties of pH-responsive schizophrenic diblock copolymer nanoparticles prepared via RAFT aqueous dispersion polymerization. Polym Chem 2021;12:5842-5850. [DOI: 10.1039/d1py01114f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
76 Duarte L, López-saucedo J, Vázquez E, Flores-rojas GG, Lopéz-saucedo F, Bucio E. Antimicrobial Materials for Local Drug Delivery. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_12] [Reference Citation Analysis]
77 Camacho-cruz LA, Velazco-medel MA, Cruz-gómez A, Bucio E. Antimicrobial Polymers. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
78 North SM, Armes SP. Aqueous one-pot synthesis of well-defined zwitterionic diblock copolymers by RAFT polymerization: an efficient and environmentally-friendly route to a useful dispersant for aqueous pigments. Green Chem 2021;23:1248-58. [DOI: 10.1039/d0gc04271d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
79 North SM, Armes SP. Synthesis of polyampholytic diblock copolymers via RAFT aqueous solution polymerization. Polym Chem 2021;12:4846-55. [DOI: 10.1039/d1py01020d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
80 Zhang Q, Kelland MA, Lewoczko EM, Bohannon CA, Zhao B. Non-amide based zwitterionic poly(sulfobetaine methacrylate)s as kinetic hydrate inhibitors. Chemical Engineering Science 2021;229:116031. [DOI: 10.1016/j.ces.2020.116031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
81 Lewoczko EM, Wang N, Lundberg CE, Kelly MT, Kent EW, Wu T, Chen M, Wang J, Zhao B. Effects of N -Substituents on the Solution Behavior of Poly(sulfobetaine methacrylate)s in Water: Upper and Lower Critical Solution Temperature Transitions. ACS Appl Polym Mater 2021;3:867-78. [DOI: 10.1021/acsapm.0c01191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
82 Kim D, Matsuoka H, Yusa SI, Saruwatari Y. Collapse Behavior of Polyion Complex (PIC) Micelles upon Salt Addition and Reforming Behavior by Dialysis and Its Temperature Responsivity. Langmuir 2020;36:15485-92. [PMID: 33325225 DOI: 10.1021/acs.langmuir.0c02456] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
83 Zaccarian F, Baker MB, Webber MJ. Biomedical Uses of Sulfobetaine-Based Zwitterionic Materials. Organic Materials 2020;02:342-57. [DOI: 10.1055/s-0040-1721741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
84 Yaagoob IY, Aldahdooh MK, Al‐taq AA, Al‐muallem HA, Mazumder MAJ, Ali SA. Synthesis of stimuli‐responsive ionic cyclopolymers in search of phosphorous‐free antiscalants. J Appl Polym Sci 2021;138:50402. [DOI: 10.1002/app.50402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
85 Scott PJ, Spiering GA, Wang Y, Seibers ZD, Moore RB, Kumar R, Lokitz BS, Long TE. Phosphonium-Based Polyzwitterions: Influence of Ionic Structure and Association on Mechanical Properties. Macromolecules 2020;53:11009-18. [DOI: 10.1021/acs.macromol.0c02166] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
86 Lteif S, Abou Shaheen S, Schlenoff JB. The Thiouronium Group for Ultrastrong Pairing Interactions between Polyelectrolytes. J Phys Chem B 2020;124:10832-40. [PMID: 33174752 DOI: 10.1021/acs.jpcb.0c07456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Yin H, King DR, Sun TL, Saruwatari Y, Nakajima T, Kurokawa T, Gong JP. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. ACS Appl Mater Interfaces 2020;12:50068-76. [PMID: 33085900 DOI: 10.1021/acsami.0c15269] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
88 Kim D, Sakamoto H, Matsuoka H, Saruwatari Y. Complex Formation of Sulfobetaine Surfactant and Ionic Polymers and Their Stimuli Responsivity. Langmuir 2020;36:12990-3000. [PMID: 33095985 DOI: 10.1021/acs.langmuir.0c02323] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
89 Koc J, Schardt L, Nolte K, Beyer C, Eckhard T, Schwiderowski P, Clarke JL, Finlay JA, Clare AS, Muhler M, Laschewsky A, Rosenhahn A. Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS Appl Mater Interfaces 2020;12:50953-61. [DOI: 10.1021/acsami.0c11580] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
90 Zhang D, Chen Q, Shi C, Chen M, Ma K, Wan J, Liu R. Dealing with the Foreign‐Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Adv Funct Mater 2021;31:2007226. [DOI: 10.1002/adfm.202007226] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
91 Zang L, Zheng S, Wang L, Ma J, Sun L. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. Journal of Membrane Science 2020;612:118379. [DOI: 10.1016/j.memsci.2020.118379] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
92 Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. Journal of Colloid and Interface Science 2020;578:242-53. [DOI: 10.1016/j.jcis.2020.05.122] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
93 Dong Y, Busatto N, Roth PJ, Martin-Fabiani I. Colloidal assembly of polydisperse particle blends during drying. Soft Matter 2020;16:8453-61. [PMID: 32812973 DOI: 10.1039/d0sm00785d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
94 Cho HI, Yi S, Hwang J, Seo J, Lee J. Roles of zwitterionic charges in polymers on synthesis of Ag seeds with anisotropic growth properties. Journal of Industrial and Engineering Chemistry 2020;89:166-174. [DOI: 10.1016/j.jiec.2020.05.008] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
95 Clark A, Taylor ME, Panzer MJ, Cebe P. Interactions between ionic liquid and fully zwitterionic copolymers probed using thermal analysis. Thermochimica Acta 2020;691:178710. [DOI: 10.1016/j.tca.2020.178710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
96 Kim D, Matsuoka H, Saruwatari Y. Formation of Sulfobetaine-Containing Entirely Ionic PIC (Polyion Complex) Micelles and Their Temperature Responsivity. Langmuir 2020;36:10130-7. [PMID: 32787061 DOI: 10.1021/acs.langmuir.0c01577] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
97 Hoffman AJ, Bates JS, Di Iorio JR, Nystrom SV, Nimlos CT, Gounder R, Hibbitts D. Rigid Arrangements of Ionic Charge in Zeolite Frameworks Conferred by Specific Aluminum Distributions Preferentially Stabilize Alkanol Dehydration Transition States. Angew Chem 2020;132:18845-53. [DOI: 10.1002/ange.202007790] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
98 Hoffman AJ, Bates JS, Di Iorio JR, Nystrom SV, Nimlos CT, Gounder R, Hibbitts D. Rigid Arrangements of Ionic Charge in Zeolite Frameworks Conferred by Specific Aluminum Distributions Preferentially Stabilize Alkanol Dehydration Transition States. Angew Chem Int Ed Engl 2020;59:18686-94. [PMID: 32659034 DOI: 10.1002/anie.202007790] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
99 Cartwright A, Jackson K, Morgan C, Anderson A, Britt DW. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy 2020;10:1018. [DOI: 10.3390/agronomy10071018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
100 Imamura R, Masuko K, Mori H. RAFT polymerization of tertiary sulfonium zwitterionic monomer in aqueous media for synthesis of protein stabilizing double hydrophilic block copolymers. Journal of Polymer Science 2020;58:1771-1786. [DOI: 10.1002/pol.20200158] [Reference Citation Analysis]
101 Bingham NM, Nisa QU, Chua SHL, Fontugne L, Spick MP, Roth PJ. Thioester-Functional Polyacrylamides: Rapid Selective Backbone Degradation Triggers Solubility Switch Based on Aqueous Lower Critical Solution Temperature/Upper Critical Solution Temperature. ACS Appl Polym Mater 2020;2:3440-9. [DOI: 10.1021/acsapm.0c00503] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
102 Biehl P, Wiemuth P, Lopez JG, Barth MC, Weidner A, Dutz S, Peneva K, Schacher FH. Weak Polyampholytes at the Interface of Magnetic Nanocarriers: A Facile Catch-and-Release Platform for Dyes. Langmuir 2020;36:6095-105. [PMID: 32396363 DOI: 10.1021/acs.langmuir.0c00455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
103 Erfani A, Seaberg J, Aichele CP, Ramsey JD. Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020;21:2557-73. [DOI: 10.1021/acs.biomac.0c00497] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 16.7] [Reference Citation Analysis]
104 Koseki T, Kanto R, Yonenuma R, Nakabayashi K, Furusawa H, Yano S, Mori H. Multi-stimuli-responsive chiral-achiral ampholytic block copolymers composed of poly(N-acryloyl amino acid) and poly(vinyl amine). Reactive and Functional Polymers 2020;150:104540. [DOI: 10.1016/j.reactfunctpolym.2020.104540] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
105 Clark AG, Salcedo Montero M, Govinna ND, Lounder SJ, Asatekin A, Cebe P. Relaxation dynamics of blends of PVDF and zwitterionic copolymer by dielectric relaxation spectroscopy. Journal of Polymer Science 2020;58:1311-24. [DOI: 10.1002/pol.20200032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
106 Vasantha VA, Hua NQ, Rusli W, Hadia NJ, Stubbs LP. Unique Oil-in-Brine Pickering Emulsion Using Responsive Antipolyelectrolyte Functionalized Latex: A Versatile Emulsion Stabilizer. ACS Appl Mater Interfaces 2020;12:23443-52. [DOI: 10.1021/acsami.0c03743] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
107 Lim J, Matsuoka H, Saruwatari Y. Effects of Halide Anions on the Solution Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers. Langmuir 2020;36:5165-75. [DOI: 10.1021/acs.langmuir.0c00325] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
108 Wang A, Yuan Z, Wang C, Luo L, Zhang W, Geng S, Qu J, Wei B, Wen Y. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance. Biomacromolecules 2020;21:1471-9. [PMID: 32069405 DOI: 10.1021/acs.biomac.0c00035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
109 Umoren SA, Solomon MM. Polymeric Corrosion Inhibitors for Oil and Gas Industry. In: Saji VS, Umoren SA, editors. Corrosion Inhibitors in the Oil and Gas Industry. Wiley; 2020. pp. 303-20. [DOI: 10.1002/9783527822140.ch12] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
110 Karuppasamy K, Vikraman D, Jang K, Ravi S, Tanveer WH, Bose R, Thandavarayan M, Kim H. Bio‐inspired proton conducting phytagel derived zwitterionic complex membranes for fuel cells. Int J Energy Res 2021;45:17120-32. [DOI: 10.1002/er.5386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
111 Mollahosseini A, Abdelrasoul A, Shoker A. Latest advances in zwitterionic structures modified dialysis membranes. Materials Today Chemistry 2020;15:100227. [DOI: 10.1016/j.mtchem.2019.100227] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
112 Zou Y, Li D, Wang Y, Ouyang Z, Peng Y, Tomás H, Xia J, Rodrigues J, Shen M, Shi X. Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors. Bioconjugate Chem 2020;31:907-15. [DOI: 10.1021/acs.bioconjchem.0c00036] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
113 Zou Y, Li D, Wang Y, Ouyang Z, Peng Y, Tomás H, Xia J, Rodrigues J, Shen M, Shi X. Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors. Bioconjugate Chem 2020;31:907-15. [DOI: 10.1021/acs.bioconjchem.0c00036] [Reference Citation Analysis]
114 Kudaibergenov SE. Macromolecular complexes of polyampholytes. Pure and Applied Chemistry 2020;92:839-57. [DOI: 10.1515/pac-2019-1104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
115 Yeo H, Khan A. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. J Am Chem Soc 2020;142:3479-88. [PMID: 32040308 DOI: 10.1021/jacs.9b11958] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
116 Parthiban A, Vasantha VA. Biorenewable functional oligomers and polymers – Direct copolymerization of ferulic acid to obtain polymeric UV absorbers and multifunctional materials. Polymer 2020;188:122122. [DOI: 10.1016/j.polymer.2019.122122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
117 Straub AP, Asa E, Zhang W, Nguyen TH, Herzberg M. In-situ graft-polymerization modification of commercial ultrafiltration membranes for long-term fouling resistance in a pilot-scale membrane bioreactor. Chemical Engineering Journal 2020;382:122865. [DOI: 10.1016/j.cej.2019.122865] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
118 Yang Z, Saeki D, Takagi R, Matsuyama H. Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio. Journal of Membrane Science 2020;595:117529. [DOI: 10.1016/j.memsci.2019.117529] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
119 Keith JR, Ganesan V. Ion transport mechanisms in salt‐doped polymerized zwitterionic electrolytes. Journal of Polymer Science 2020;58:578-88. [DOI: 10.1002/pol.20190099] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
120 Goldfeld DJ, Silver ES, Radlauer MR, Hillmyer MA. Synthesis and Self-Assembly of Block Polyelectrolyte Membranes through a Mild, 2-in-1 Postpolymerization Treatment. ACS Appl Polym Mater 2020;2:817-25. [DOI: 10.1021/acsapm.9b01100] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
121 Dahlke J, Kimmig J, Abend M, Zechel S, Vitz J, Schubert US, Hager MD. Quantification of the scratch-healing efficiency for novel zwitterionic polymers. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-019-0190-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
122 Paschke S, Lienkamp K. Polyzwitterions: From Surface Properties and Bioactivity Profiles to Biomedical Applications. ACS Appl Polym Mater 2020;2:129-51. [DOI: 10.1021/acsapm.9b00897] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
123 Zaghmi A, Greschner AA, Gauthier MA. In vivo properties of therapeutic bioconjugates composed of proteins and architecturally/functionally complex polymers. Polymer-Protein Conjugates 2020. [DOI: 10.1016/b978-0-444-64081-9.00017-6] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
124 Kudaibergenov SE. Advances in Synthetic Polyampholytes for Biotechnology and Medicine. Ref J Chem 2020;10:12-39. [DOI: 10.1134/s2079978020010021] [Reference Citation Analysis]
125 Liu C, Song D, Zhang W, He Q, Huangfu X, Sun S, Sun Z, Cheng W, Ma J. Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation. Water Research 2020;168:115181. [DOI: 10.1016/j.watres.2019.115181] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
126 Schneider-chaabane A, Bleicher V, Rau S, Al-ahmad A, Lienkamp K. Stimulus-Responsive Polyzwitterionic Surfaces Made from Itaconic Acid: Self-Triggered Antimicrobial Activity, Protein Repellency, and Cell Compatibility. ACS Appl Mater Interfaces 2020;12:21242-53. [DOI: 10.1021/acsami.9b17781] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
127 Schönemann E, Koc J, Aldred N, Clare AS, Laschewsky A, Rosenhahn A, Wischerhoff E. Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties. Macromol Rapid Commun 2020;41:1900447. [DOI: 10.1002/marc.201900447] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
128 Imamura R, Mori H. Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment. ACS Omega 2019;4:18234-47. [PMID: 31720524 DOI: 10.1021/acsomega.9b02209] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
129 Gordievskaya YD, Kramarenko EY. Effect of the Fraction and Size of Polar Groups on the Formation of Compact Conformations of a Polymer Chain with Variable Stiffness in Low-Polar Media. Polym Sci Ser B 2019;61:704-714. [DOI: 10.1134/s1560090419060046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
130 Hruby M, Štěpánek P, Pánek J, Papadakis CM. Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid Polym Sci 2019;297:1383-401. [DOI: 10.1007/s00396-019-04576-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
131 Cala L, Rivilla I, Cossío FP, Fañanás FJ, Rodríguez F. Synthesis of Sultones from Chlorosulfates by a Complex Cascade Reaction Occurring under Mild Thermal Conditions. Chemistry 2019;25:13083-7. [PMID: 31379026 DOI: 10.1002/chem.201903228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
132 Zhao D, Rajan R, Matsumura K. Dual Thermo- and pH-Responsive Behavior of Double Zwitterionic Graft Copolymers for Suppression of Protein Aggregation and Protein Release. ACS Appl Mater Interfaces 2019;11:39459-69. [DOI: 10.1021/acsami.9b12723] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
133 So RC, Carreon-asok AC. Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes. Chem Rev 2019;119:11442-509. [DOI: 10.1021/acs.chemrev.8b00773] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
134 Debayle M, Balloul E, Dembele F, Xu X, Hanafi M, Ribot F, Monzel C, Coppey M, Fragola A, Dahan M, Pons T, Lequeux N. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 2019;219:119357. [DOI: 10.1016/j.biomaterials.2019.119357] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 16.5] [Reference Citation Analysis]
135 Han YJ, Liu YL. Preparation of Cross-Linkable Zwitterionic Polybenzoxazine with Sulfobetaine Groups and Corresponding Zwitterionic Thermosetting Resin for Antifouling Surface Coating. ACS Appl Bio Mater 2019;2:3799-807. [PMID: 35021353 DOI: 10.1021/acsabm.9b00412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
136 Vousoughi P, Moghbeli MR, Nikkhah SJ. Molecular Dynamics (MD) Simulation of Zwitterion-Functionalized PMMA with Hydrophilic and Antifouling Surface Characteristics. Macromol Res 2019;27:1200-9. [DOI: 10.1007/s13233-019-7163-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
137 Kardela JH, Millichamp IS, Ferguson J, Parry AL, Reynolds KJ, Aldred N, Clare AS. Nonfreezable Water and Polymer Swelling Control the Marine Antifouling Performance of Polymers with Limited Hydrophilic Content. ACS Appl Mater Interfaces 2019;11:29477-89. [PMID: 31397993 DOI: 10.1021/acsami.9b05893] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
138 Papadakis CM, Müller-buschbaum P, Laschewsky A. Switch It Inside-Out: “Schizophrenic” Behavior of All Thermoresponsive UCST–LCST Diblock Copolymers. Langmuir 2019;35:9660-76. [DOI: 10.1021/acs.langmuir.9b01444] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
139 Zavahir S, Krupa I, AlMaadeed SA, Tkac J, Kasak P. Polyzwitterionic Hydrogels in Engines Based on the Antipolyelectrolyte Effect and Driven by the Salinity Gradient. Environ Sci Technol 2019;53:9260-8. [PMID: 31240919 DOI: 10.1021/acs.est.8b06377] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
140 Abutalip M, Mahmood A, Rakhmetullayeva R, Shakhvorostov A, Dauletov Y, Kudaibergenov S, Nuraje N. Reversible Addition?Fragmentation Chain-Transfer Polymerization of Amphiphilic Polycarboxybetaines and Their Molecular Interactions. Langmuir 2019;35:8389-97. [PMID: 31199657 DOI: 10.1021/acs.langmuir.9b01347] [Reference Citation Analysis]
141 Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019;141:11259-68. [DOI: 10.1021/jacs.9b04757] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 15.8] [Reference Citation Analysis]
142 Shah SAA, Athir N, Imran M, Cheng J, Zhang J. Thermo-mechanically improved curcumin and zwitterion incorporated polyurethane-urea elastomers. Polymer Degradation and Stability 2019;164:28-35. [DOI: 10.1016/j.polymdegradstab.2019.03.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
143 Kreuzer LP, Widmann T, Hohn N, Wang K, Bießmann L, Peis L, Moulin J, Hildebrand V, Laschewsky A, Papadakis CM, Müller-buschbaum P. Swelling and Exchange Behavior of Poly(sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules 2019;52:3486-98. [DOI: 10.1021/acs.macromol.9b00443] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
144 Vishnevetskaya NS, Hildebrand V, Nizardo NM, Ko C, Di Z, Radulescu A, Barnsley LC, Müller-buschbaum P, Laschewsky A, Papadakis CM. All-In-One “Schizophrenic” Self-Assembly of Orthogonally Tuned Thermoresponsive Diblock Copolymers. Langmuir 2019;35:6441-52. [DOI: 10.1021/acs.langmuir.9b00241] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
145 Sun Y, Chen C, Xu H, Lei K, Zhao L, Lang M. Examination of functional zwitterionic polymer hydrogels based on polypyridinium salt by a convenient cross-linker. Journal of Macromolecular Science, Part A 2019;56:287-298. [DOI: 10.1080/10601325.2019.1568195] [Reference Citation Analysis]
146 Petroff MG, Garcia EA, Herrera-alonso M, Bevan MA. Ionic Strength-Dependent Interactions and Dimensions of Adsorbed Zwitterionic Copolymers. Langmuir 2019;35:4976-85. [DOI: 10.1021/acs.langmuir.9b00218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
147 Gräfe C, von der Lühe M, Weidner A, Globig P, Clement JH, Dutz S, Schacher FH. Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: effects of charge and incubation conditions. Nanotechnology 2019;30:265707. [PMID: 30861506 DOI: 10.1088/1361-6528/ab0ed0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
148 Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019;48:757-70. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Cited by in Crossref: 204] [Cited by in F6Publishing: 209] [Article Influence: 51.0] [Reference Citation Analysis]
149 Kruse J, Biehl P, Schacher FH. Different Routes to Ampholytic Polydehydroalanine: Orthogonal versus Simultaneous Deprotection. Macromol Rapid Commun 2019;40:1800857. [DOI: 10.1002/marc.201800857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
150 Gordievskaya YD, Kramarenko EY. Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations. Soft Matter 2019;15:6073-85. [DOI: 10.1039/c9sm00909d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
151 Athir N, Shi L, Shah SAA, Zhang Z, Cheng J, Liu J, Zhang J. Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked via multifunctional zwitterions. Phys Chem Chem Phys 2019;21:21615-25. [DOI: 10.1039/c9cp03221e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
152 Ďorďovič V, Vojtová J, Jana S, Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym Chem 2019;10:5522-33. [DOI: 10.1039/c9py00938h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
153 Max JB, Pergushov DV, Sigolaeva LV, Schacher FH. Polyampholytic graft copolymers based on polydehydroalanine (PDha) – synthesis, solution behavior and application as dispersants for carbon nanotubes. Polym Chem 2019;10:3006-19. [DOI: 10.1039/c8py01390j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
154 Fares HM, Wang Q, Yang M, Schlenoff JB. Swelling and Inflation in Polyelectrolyte Complexes. Macromolecules 2019;52:610-9. [DOI: 10.1021/acs.macromol.8b01838] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
155 Kim D, Matsuoka H, Saruwatari Y. Synthesis and Stimuli Responsivity of Diblock Copolymers Composed of Sulfobetaine and Ionic Blocks: Influence of the Block Ratio. Langmuir 2019;35:1590-7. [DOI: 10.1021/acs.langmuir.8b03319] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
156 Zhang J, Zhang F, Wang A, Lu Y, Li J, Zhu Y, Jin J. Zwitterionic Nanofibrous Membranes with a Superior Antifouling Property for Gravity-Driven Crude Oil-in-Water Emulsion Separation. Langmuir 2019;35:1682-9. [DOI: 10.1021/acs.langmuir.8b03967] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
157 Carolina Araujo Y, Araujo M. Polymers for application in high temperature and high salinity reservoirs – critical review of properties and aspects to consider for laboratory screening. Rev fuentes reventón enrg 2018;16:55-71. [DOI: 10.18273/revfue.v16n2-2018004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
158 Zhao X, Abutalip M, Afroz K, Nuraje N. Hydrophobically Modified Polycarboxybetaine: From Living Radical Polymerization to Self-Assembly. Langmuir 2019;35:1606-12. [DOI: 10.1021/acs.langmuir.8b03561] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
159 de Jongh PA, Haddleton DM, Kempe K. Spontaneous zwitterionic copolymerisation: An undervalued and efficacious technique for the synthesis of functional degradable oligomers and polymers. Progress in Polymer Science 2018;87:228-46. [DOI: 10.1016/j.progpolymsci.2018.08.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
160 Beltrán-osuna ÁA, Ródenas-rochina J, Gómez Ribelles JL, Perilla JE. Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polym Adv Technol 2019;30:688-97. [DOI: 10.1002/pat.4505] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
161 Chen X, Zhang K, Talley SJ, Orsino CM, Moore RB, Long TE. Quadruple hydrogen bonding containing supramolecular thermoplastic elastomers: Mechanical and morphological correlations. J Polym Sci Part A: Polym Chem 2018;57:13-23. [DOI: 10.1002/pola.29272] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
162 Vajihinejad V, Gumfekar SP, Bazoubandi B, Rostami Najafabadi Z, Soares JBP. Water Soluble Polymer Flocculants: Synthesis, Characterization, and Performance Assessment. Macromol Mater Eng 2018;304:1800526. [DOI: 10.1002/mame.201800526] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 14.8] [Reference Citation Analysis]
163 Koc J, Schönemann E, Amuthalingam A, Clarke J, Finlay JA, Clare AS, Laschewsky A, Rosenhahn A. Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. Langmuir 2019;35:1552-62. [DOI: 10.1021/acs.langmuir.8b02799] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
164 Kudaibergenov S, Koetz J, Nuraje N. Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity, and application. Adv Compos Hybrid Mater 2018;1:649-84. [DOI: 10.1007/s42114-018-0059-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
165 Daumann K, May P, Brückerhoff J, Ulbricht M. Synthesis of well-defined cross-linkable zwitterionic macromolecular building blocks for hydrogels. Reactive and Functional Polymers 2018;131:251-7. [DOI: 10.1016/j.reactfunctpolym.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
166 Jana S, Biswas Y, Anas M, Saha A, Mandal TK. Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions. Langmuir 2018;34:12653-63. [DOI: 10.1021/acs.langmuir.8b03022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
167 Santa Chalarca CF, Letteri RA, Perazzo A, Stone HA, Emrick T. Building Supracolloidal Fibers from Zwitterion‐Stabilized Adhesive Emulsions. Adv Funct Mater 2018;28:1804325. [DOI: 10.1002/adfm.201804325] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
168 Sinclair A, O'Kelly MB, Bai T, Hung HC, Jain P, Jiang S. Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies. Adv Mater 2018;30:e1803087. [PMID: 30066374 DOI: 10.1002/adma.201803087] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 12.2] [Reference Citation Analysis]
169 Vasantha VA, Junhui C, Wenguang Z, van Herk AM, Parthiban A. Reversible Photo- and Thermoresponsive, Self-Assembling Azobenzene Containing Zwitterionic Polymers. Langmuir 2019;35:1465-74. [DOI: 10.1021/acs.langmuir.8b01820] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
170 Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir 2019;35:1056-71. [PMID: 30048142 DOI: 10.1021/acs.langmuir.8b01789] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 14.8] [Reference Citation Analysis]
171 Kocak G, Cicek H, Ceylan Ö, Bütün V. Antimicrobial and anti-quorum-sensing properties and paint film usage of novel diazaborine-based copolymers: Antimicrobial and anti-quorum-sensing properties and paint film usage of novel diazaborine-based copolymers. J Appl Polym Sci 2019;136:46907. [DOI: 10.1002/app.46907] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
172 Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Imidazo[2',1':2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2018;80:11-23. [PMID: 29864684 DOI: 10.1016/j.bioorg.2018.05.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
173 Cheng F, Zhu C, He W, Zhao J, Qu J. pSBMA-Conjugated Magnetic Nanoparticles for Selective IgG Separation. Langmuir 2019;35:1111-8. [DOI: 10.1021/acs.langmuir.8b00878] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
174 Ohno H, Yoshizawa-Fujita M, Kohno Y. Design and properties of functional zwitterions derived from ionic liquids. Phys Chem Chem Phys 2018;20:10978-91. [PMID: 29620779 DOI: 10.1039/c7cp08592c] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 8.6] [Reference Citation Analysis]
175 Vishnevetskaya NS, Hildebrand V, Dyakonova MA, Niebuur B, Kyriakos K, Raftopoulos KN, Di Z, Müller-buschbaum P, Laschewsky A, Papadakis CM. Dual Orthogonal Switching of the “Schizophrenic” Self-Assembly of Diblock Copolymers. Macromolecules 2018;51:2604-14. [DOI: 10.1021/acs.macromol.8b00096] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
176 Wang CG, Hanindita F, Goto A. Biocompatible Choline Iodide Catalysts for Green Living Radical Polymerization of Functional Polymers. ACS Macro Lett 2018;7:263-8. [PMID: 35610904 DOI: 10.1021/acsmacrolett.8b00026] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
177 Mazumder MA, Alhaffar MT, Ali SA. Immobilization of two polyelectrolytes leading to a novel hydrogel for high-performance Hg2+ removal to ppb and sub-ppb levels. Chemical Engineering Journal 2018;334:1440-54. [DOI: 10.1016/j.cej.2017.11.083] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
178 Zhang W, Yang Z, Kaufman Y, Bernstein R. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. J Colloid Interface Sci 2018;517:155-65. [PMID: 29421675 DOI: 10.1016/j.jcis.2018.01.106] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 10.8] [Reference Citation Analysis]
179 Zhang Q, Gou S, Zhao L, Fei Y, Zhou L, Li S, Wu Y, Guo Q. Solution behavior of water-soluble poly(acrylamide- co -sulfobetaine) with intensive antisalt performance as an enhanced oil-recovery chemical. J Appl Polym Sci 2018;135:46235. [DOI: 10.1002/app.46235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
180 Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev 2018;124:140-9. [PMID: 28736302 DOI: 10.1016/j.addr.2017.07.015] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 19.0] [Reference Citation Analysis]
181 Wang N, Seymour BT, Lewoczko EM, Kent EW, Chen M, Wang J, Zhao B. Zwitterionic poly(sulfobetaine methacrylate)s in water: from upper critical solution temperature (UCST) to lower critical solution temperature (LCST) with increasing length of one alkyl substituent on the nitrogen atom. Polym Chem 2018;9:5257-61. [DOI: 10.1039/c8py01211c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
182 Huang H, Yu J, Guo H, Shen Y, Yang F, Wang H, Liu R, Liu Y. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide. Applied Surface Science 2018;427:38-47. [DOI: 10.1016/j.apsusc.2017.08.004] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 8.6] [Reference Citation Analysis]
183 Xiang T, Lu T, Zhao W, Zhao C. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New J Chem 2018;42:5323-33. [DOI: 10.1039/c8nj00039e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
184 Du Y, Li C, Jin J, Li C, Jiang W. Surface modification of polyisobutylene via grafting amino acid-based poly (acryloyl-6-aminocaproic acid) as multifunctional material. Colloids Surf B Biointerfaces 2018;161:73-82. [PMID: 29054046 DOI: 10.1016/j.colsurfb.2017.10.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
185 Arjunan Vasantha V, Oh Biying A, Parthiban A. Polysulfobetaine bearing tertiary amide between counterions and its applications. J Appl Polym Sci 2018;135:46178. [DOI: 10.1002/app.46178] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
186 von der Lühe M, Weidner A, Dutz S, Schacher FH. Reversible Electrostatic Adsorption of Polyelectrolytes and Bovine Serum Albumin onto Polyzwitterion-Coated Magnetic Multicore Nanoparticles: Implications for Sensing and Drug Delivery. ACS Appl Nano Mater 2018;1:232-44. [DOI: 10.1021/acsanm.7b00118] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
187 Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Appl Mater Interfaces 2017;9:37511-23. [DOI: 10.1021/acsami.7b13565] [Cited by in Crossref: 250] [Cited by in F6Publishing: 255] [Article Influence: 41.7] [Reference Citation Analysis]
188 Rössel C, Billing M, Görls H, Festag G, Grube M, Bellstedt P, Nischang I, Schacher F. Synthesis and modification of poly(ethyl 2-(imidazol-1-yl)acrylate) (PEImA). Polymer 2017;127:182-91. [DOI: 10.1016/j.polymer.2017.08.058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
189 Kumar A, Mandal A. Synthesis and physiochemical characterization of zwitterionic surfactant for application in enhanced oil recovery. Journal of Molecular Liquids 2017;243:61-71. [DOI: 10.1016/j.molliq.2017.08.032] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 12.8] [Reference Citation Analysis]
190 Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017;117:12942-3038. [DOI: 10.1021/acs.chemrev.7b00088] [Cited by in Crossref: 203] [Cited by in F6Publishing: 206] [Article Influence: 33.8] [Reference Citation Analysis]
191 Jain P, Hung H, Lin X, Ma J, Zhang P, Sun F, Wu K, Jiang S. Poly(ectoine) Hydrogels Resist Nonspecific Protein Adsorption. Langmuir 2017;33:11264-9. [DOI: 10.1021/acs.langmuir.7b02434] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
192 Zheng L, Sundaram HS, Wei Z, Li C, Yuan Z. Applications of zwitterionic polymers. Reactive and Functional Polymers 2017;118:51-61. [DOI: 10.1016/j.reactfunctpolym.2017.07.006] [Cited by in Crossref: 124] [Cited by in F6Publishing: 129] [Article Influence: 20.7] [Reference Citation Analysis]
193 Shakhvorostov AV, Nurakhmetova ZA, Seilkhanov TM, Nuraje N, Kudaibergenov SE. Self-assembly of hydrophobic polybetaine based on (tridecyl)aminocrotonate and methacrylic acid. Polym Sci Ser C 2017;59:68-76. [DOI: 10.1134/s1811238217010167] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
194 Tsvetkov N, Lezov A, Vlasov P, Gubarev A, Lezova A, Lebedeva E, Polushina G, Domnina N. Macromolecules of polycarboxybetaine poly(4-N,N-diallyl-N-methylammonio) butanoate: Synthesis and molecular characteristics. Polymer 2017;122:34-44. [DOI: 10.1016/j.polymer.2017.06.030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
195 Hildebrand V, Heydenreich M, Laschewsky A, Möller HM, Müller-buschbaum P, Papadakis CM, Schanzenbach D, Wischerhoff E. “Schizophrenic” self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block. Polymer 2017;122:347-57. [DOI: 10.1016/j.polymer.2017.06.063] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
196 Bengani-lutz P, Converse E, Cebe P, Asatekin A. Self-Assembling Zwitterionic Copolymers as Membrane Selective Layers with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. ACS Appl Mater Interfaces 2017;9:20859-72. [DOI: 10.1021/acsami.7b04884] [Cited by in Crossref: 109] [Cited by in F6Publishing: 113] [Article Influence: 18.2] [Reference Citation Analysis]
197 Liu Y, Huang H, Huo P, Gu J. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydrate Polymers 2017;165:266-75. [DOI: 10.1016/j.carbpol.2017.02.052] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 10.0] [Reference Citation Analysis]
198 Delgado JD, Schlenoff JB. Static and Dynamic Solution Behavior of a Polyzwitterion Using a Hofmeister Salt Series. Macromolecules 2017;50:4454-64. [DOI: 10.1021/acs.macromol.7b00525] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 10.7] [Reference Citation Analysis]
199 Ren H, Mei Z, Chen Y, Chen S, Ge Z, Hu J. Synthesis of zwitterionic acrylamide copolymers for biocompatible applications. Journal of Bioactive and Compatible Polymers 2018;33:3-16. [DOI: 10.1177/0883911517707776] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
200 Vishnevetskaya NS, Hildebrand V, Niebuur B, Grillo I, Filippov SK, Laschewsky A, Müller-buschbaum P, Papadakis CM. “Schizophrenic” Micelles from Doubly Thermoresponsive Polysulfobetaine- b -poly( N -isopropylmethacrylamide) Diblock Copolymers. Macromolecules 2017;50:3985-99. [DOI: 10.1021/acs.macromol.7b00356] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
201 Zheng L, Sun Z, Li C, Wei Z, Jain P, Wu K. Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability 2017;139:1-19. [DOI: 10.1016/j.polymdegradstab.2017.03.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
202 Tong T, Zhao S, Boo C, Hashmi SM, Elimelech M. Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. Environ Sci Technol 2017;51:4396-406. [DOI: 10.1021/acs.est.6b06411] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 15.0] [Reference Citation Analysis]
203 Sahiner N, Demirci S. Can PEI microgels become biocompatible upon betainization? Mater Sci Eng C Mater Biol Appl 2017;77:642-8. [PMID: 28532075 DOI: 10.1016/j.msec.2017.03.285] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
204 Nishida M, Nakaji-hirabayashi T, Kitano H, Saruwatari Y, Matsuoka K. Titanium alloy modified with anti-biofouling zwitterionic polymer to facilitate formation of bio-mineral layer. Colloids and Surfaces B: Biointerfaces 2017;152:302-10. [DOI: 10.1016/j.colsurfb.2017.01.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
205 Kurowska M, Eickenscheidt A, Guevara-solarte D, Widyaya VT, Marx F, Al-ahmad A, Lienkamp K. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network. Biomacromolecules 2017;18:1373-86. [DOI: 10.1021/acs.biomac.7b00100] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 7.2] [Reference Citation Analysis]
206 Semak V, Fischer MB, Weber V. Biomimetic Principles to Develop Blood Compatible Surfaces. Int J Artif Organs 2017;40:22-30. [DOI: 10.5301/ijao.5000559] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
207 Cheng G, Liao M, Zhao D, Zhou J. Molecular Understanding on the Underwater Oleophobicity of Self-Assembled Monolayers: Zwitterionic versus Nonionic. Langmuir 2017;33:1732-41. [DOI: 10.1021/acs.langmuir.6b03988] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
208 Yesilyurt V, Veiseh O, Doloff JC, Li J, Bose S, Xie X, Bader AR, Chen M, Webber MJ, Vegas AJ, Langer R, Anderson DG. A Facile and Versatile Method to Endow Biomaterial Devices with Zwitterionic Surface Coatings. Adv Healthc Mater 2017;6. [PMID: 27976536 DOI: 10.1002/adhm.201601091] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 7.5] [Reference Citation Analysis]
209 Chen S, Mei Z, Ren H, Zhuo H. Integrated antimicrobial and shape memory zwitterionic copolymers. Materials Letters 2017;189:74-7. [DOI: 10.1016/j.matlet.2016.11.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
210 Wen H, Chen S, Ge Z, Zhuo H, Ling J, Liu Q. Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Adv 2017;7:31525-34. [DOI: 10.1039/c7ra05212j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
211 Billing M, Festag G, Bellstedt P, Schacher FH. Amphiphilic and double hydrophilic block copolymers containing a polydehydroalanine block. Polym Chem 2017;8:936-45. [DOI: 10.1039/c6py02076c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
212 Hatton FL, Engström J, Forsling J, Malmström E, Carlmark A. Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Adv 2017;7:14947-58. [DOI: 10.1039/c6ra28236a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
213 Maji T, Banerjee S, Bose A, Mandal TK. A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 2017;8:3164-76. [DOI: 10.1039/c7py00460e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
214 Yaagoob IY, Al-muallem HA, Ali SA. Synthesis and application of polyzwitterionic and polyampholytic maleic acid-alt-(diallylamino)propylphosphonates. RSC Adv 2017;7:31641-53. [DOI: 10.1039/c7ra04418f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
215 Lieu Le N, Quilitzsch M, Cheng H, Hong P, Ulbricht M, Nunes SP, Chung T. Hollow fiber membrane lumen modified by polyzwitterionic grafting. Journal of Membrane Science 2017;522:1-11. [DOI: 10.1016/j.memsci.2016.08.038] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
216 Hildebrand V, Laschewsky A, Päch M, Müller-buschbaum P, Papadakis CM. Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates). Polym Chem 2017;8:310-22. [DOI: 10.1039/c6py01220e] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 10.5] [Reference Citation Analysis]
217 Shakhvorostov AV, Nurakhmetova ZA, Seilkhanov TM, Nurxat N, Kudaibergenov SE. Self-Assembly of Hydrophobic Polybetaine Based on (Tridecyl)aminocrotonate and Methacrylic Acid1, "Высокомолекулярные соединения. Серия С". Высокомолекулярные соединения С 2017. [DOI: 10.7868/s2308114717010095] [Reference Citation Analysis]
218 Osaheni AO, Finkelstein EB, Mather PT, Blum MM. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. Acta Biomater 2016;46:245-55. [PMID: 27650587 DOI: 10.1016/j.actbio.2016.09.022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
219 Billing M, Elter JK, Schacher FH. Sulfo-and carboxybetaine-containing polyampholytes based on poly(2-vinyl pyridine)s: Synthesis and solution behavior. Polymer 2016;104:40-8. [DOI: 10.1016/j.polymer.2016.09.081] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
220 Liu Y, Ai Y, Huo P, Huang H, Gu J. An effective approach to fabrication of antifouling ultrafiltration membrane based on zwitterionic polyimide. High Performance Polymers 2017;29:1006-15. [DOI: 10.1177/0954008316667787] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
221 Matsumura K, Rajan R, Ahmed S, Jain M. Medical Application of Polyampholytes. Biopolymers for Medical Applications 2016. [DOI: 10.1201/9781315368863-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
222 Lu M, Zhao J, Tu W, Hu J, Wang F. Combined ‘spear and shield’: superhydrophilic antimicrobial and antifouling mesh membrane for efficient oil–water separation through facile and environmentally friendly strategy. J Coat Technol Res 2017;14:243-53. [DOI: 10.1007/s11998-016-9834-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
223 Han M, Kim DW, Kim YC. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries. ACS Appl Mater Interfaces 2016;8:26073-81. [PMID: 27622726 DOI: 10.1021/acsami.6b08781] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
224 Chen S, Ren H, Mei Z, Zhuo H, Yang H, Ge Z. Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria. Macromol Biosci 2016;16:1714-22. [DOI: 10.1002/mabi.201600306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
225 Zhang K, Fahs GB, Drummey KJ, Moore RB, Long TE. Doubly-Charged Ionomers with Enhanced Microphase-Separation. Macromolecules 2016;49:6965-72. [DOI: 10.1021/acs.macromol.6b00832] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
226 Ali SA, Jamiu ZA. Poly(N,N-diallylaspartic acid-alt-sulfur dioxide): its synthesis and application. Polym Bull 2016;73:2179-98. [DOI: 10.1007/s00289-016-1602-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
227 Liu J, Zhou J. Hydrolysis-controlled protein adsorption and antifouling behaviors of mixed charged self-assembled monolayer: A molecular simulation study. Acta Biomater 2016;40:23-30. [PMID: 27134014 DOI: 10.1016/j.actbio.2016.04.044] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
228 Ali SA, Haladu SA, El-sharif AMZ. Synthesis and application of a cyclopolymer bearing a propylphosphonic acid and a propylcarboxylic acid pendants in the same repeating unit. J Polym Res 2016;23. [DOI: 10.1007/s10965-016-1006-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
229 Pineda-contreras A, Hernández-madrigal JV, Vázquez-vuelvas OF, Fomine S. Synthesis and ROMP of new sulfobetaine and carboxybetaine norbornene. e-Polymers 2016;16:181-8. [DOI: 10.1515/epoly-2015-0266] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
230 Meek KM, Elabd YA. Sulfonated Polymerized Ionic Liquid Block Copolymers. Macromol Rapid Commun 2016;37:1200-6. [DOI: 10.1002/marc.201600089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
231 Lacík I, Sobolčiak P, Stach M, Chorvát D, Kasák P. Propagation rate coefficient for sulfobetaine monomers by PLP−SEC. Polymer 2016;87:38-49. [DOI: 10.1016/j.polymer.2016.01.060] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
232 Ali SA, Haladu SA, El-sharif AMZ. Diallylbis(3-ethoxycarbonylpropyl)ammonium chloride: A symmetrically substituted monomer for the synthesis of an alternate zwitterionic-anionic cyclopolymer. Macromol Res 2016;24:163-9. [DOI: 10.1007/s13233-016-4024-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
233 Morozova S, Hu G, Emrick T, Muthukumar M. Influence of Dipole Orientation on Solution Properties of Polyzwitterions. ACS Macro Lett 2016;5:118-22. [PMID: 35668586 DOI: 10.1021/acsmacrolett.5b00876] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
234 Zhu Y, Batchelor R, Lowe AB, Roth PJ. Design of Thermoresponsive Polymers with Aqueous LCST, UCST, or Both: Modification of a Reactive Poly(2-vinyl-4,4-dimethylazlactone) Scaffold. Macromolecules 2016;49:672-80. [DOI: 10.1021/acs.macromol.5b02056] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 10.9] [Reference Citation Analysis]
235 Nikolaou V, Simula A, Droesbeke M, Risangud N, Anastasaki A, Kempe K, Wilson P, Haddleton DM. Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polym Chem 2016;7:2452-6. [DOI: 10.1039/c5py02016f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
236 Mrlík M, Ilčíková M, Cvek M, Pavlínek V, Zahoranová A, Kroneková Z, Kasak P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv 2016;6:32823-30. [DOI: 10.1039/c6ra03919g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
237 Hildebrand V, Laschewsky A, Wischerhoff E. Modulating the solubility of zwitterionic poly((3-methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties. Polym Chem 2016;7:731-40. [DOI: 10.1039/c5py01642h] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 7.4] [Reference Citation Analysis]
238 Obadia MM, Drockenmuller E. Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. Chem Commun 2016;52:2433-50. [DOI: 10.1039/c5cc09861k] [Cited by in Crossref: 117] [Cited by in F6Publishing: 118] [Article Influence: 16.7] [Reference Citation Analysis]
239 Zhang K, Drummey KJ, Moon NG, Chiang WD, Long TE. Styrenic DABCO salt-containing monomers for the synthesis of novel charged polymers. Polym Chem 2016;7:3370-4. [DOI: 10.1039/c6py00426a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
240 Chen S, Mei Z, Ren H, Zhuo H, Liu J, Ge Z. Pyridine type zwitterionic polyurethane with both multi-shape memory effect and moisture-sensitive shape memory effect for smart biomedical application. Polym Chem 2016;7:5773-82. [DOI: 10.1039/c6py01099g] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
241 Khung YL, Narducci D. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Adv Colloid Interface Sci 2015;226:166-86. [PMID: 26589704 DOI: 10.1016/j.cis.2015.10.009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 5.9] [Reference Citation Analysis]
242 Ilčíková M, Tkáč J, Kasák P. Switchable Materials Containing Polyzwitterion Moieties. Polymers 2015;7:2344-70. [DOI: 10.3390/polym7111518] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
243 Schmid AJ, Schroeder R, Eckert T, Radulescu A, Pich A, Richtering W. Synthesis and solution behaviour of stimuli-sensitive zwitterionic microgels. Colloid Polym Sci 2015;293:3305-18. [DOI: 10.1007/s00396-015-3749-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
244 Ye T, Song Y, Zheng Q. Salt response and rheological behavior of acrylamide-sulfobetaine copolymer. Colloid Polym Sci 2016;294:389-97. [DOI: 10.1007/s00396-015-3790-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
245 Du H, Qian X. The hydration properties of carboxybetaine zwitterion brushes. J Comput Chem 2016;37:877-85. [DOI: 10.1002/jcc.24234] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
246 Chang C, Letteri R, Hayward RC, Emrick T. Functional Sulfobetaine Polymers: Synthesis and Salt-Responsive Stabilization of Oil-in-Water Droplets. Macromolecules 2015;48:7843-50. [DOI: 10.1021/acs.macromol.5b01861] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
247 Smith GMT, Burton PM, Bray CD. Sultones and Sultines via a Julia-Kocienski Reaction of Epoxides. Angew Chem 2015;127:15451-5. [DOI: 10.1002/ange.201508467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
248 Ye G, Lee J, Perreault F, Elimelech M. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated “Defending” and “Attacking” Strategies against Biofouling. ACS Appl Mater Interfaces 2015;7:23069-79. [DOI: 10.1021/acsami.5b06647] [Cited by in Crossref: 179] [Cited by in F6Publishing: 181] [Article Influence: 22.4] [Reference Citation Analysis]
249 Arjunan Vasantha V, Junhui C, Ying TB, Parthiban A. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity. Langmuir 2015;31:11124-34. [DOI: 10.1021/acs.langmuir.5b01768] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
250 Ranka M, Brown P, Hatton TA. Responsive Stabilization of Nanoparticles for Extreme Salinity and High-Temperature Reservoir Applications. ACS Appl Mater Interfaces 2015;7:19651-8. [DOI: 10.1021/acsami.5b04200] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 8.5] [Reference Citation Analysis]
251 Skinner M, Selhorst R, Emrick T. Synthesis of water-soluble zwitterionic polysiloxanes. J Polym Sci Part A: Polym Chem 2016;54:127-34. [DOI: 10.1002/pola.27773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
252 Maji T, Banerjee S, Biswas Y, Mandal TK. Dual-Stimuli-Responsive l -Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules 2015;48:4957-66. [DOI: 10.1021/acs.macromol.5b01099] [Cited by in Crossref: 89] [Cited by in F6Publishing: 89] [Article Influence: 11.1] [Reference Citation Analysis]
253 Ilčíková M, Mrlík M, Babayan V, Kasák P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv 2015;5:57820-7. [DOI: 10.1039/c5ra08403b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
254 Chen Y, Mo F, Chen S, Yang Y, Chen S, Zhuo H, Liu J. A shape memory copolymer based on 2-(dimethylamino)ethyl methacrylate and methyl allyl polyethenoxy ether for potential biological applications. RSC Adv 2015;5:44435-46. [DOI: 10.1039/c5ra05753a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
255 Liu Y, Ma C, Wang S, Guo H, Zhang B, Zhang L, Gu K, Gu J. Fabrication and performance study of a zwitterionic polyimide antifouling ultrafiltration membrane. RSC Adv 2015;5:21316-25. [DOI: 10.1039/c5ra01760b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
256 Zhu Y, Noy J, Lowe AB, Roth PJ. The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures. Polym Chem 2015;6:5705-18. [DOI: 10.1039/c5py00160a] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 9.8] [Reference Citation Analysis]
257 Chen S, Mo F, Stadler FJ, Chen S, Ge Z, Zhuo H. Development of zwitterionic copolymers with multi-shape memory effects and moisture-sensitive shape memory effects. J Mater Chem B 2015;3:6645-55. [DOI: 10.1039/c5tb01075f] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
258 Kratzer D, Barner L, Friedmann C, Bräse S, Lahann J. A Synthetic Route to Sulfobetaine Methacrylates with Varying Charge Distance: Sulfobetaine Methacrylates with Varying Charge Distance. Eur J Org Chem 2014;2014:8064-71. [DOI: 10.1002/ejoc.201402734] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
259 Hildebrand V, Laschewsky A, Zehm D. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. J Biomater Sci Polym Ed 2014;25:1602-18. [PMID: 25058808 DOI: 10.1080/09205063.2014.939918] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
260 [DOI: 10.1101/2020.05.25.115675] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Reference Citation Analysis]