BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020;12:E905. [PMID: 32295115 DOI: 10.3390/polym12040905] [Cited by in Crossref: 84] [Cited by in F6Publishing: 89] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Qi P, Ning Z, Zhang X. Synergistic effects of 3D chitosan-based hybrid scaffolds and mesenchymal stem cells in orthopaedic tissue engineering. IET Nanobiotechnol 2023. [PMID: 36708277 DOI: 10.1049/nbt2.12103] [Reference Citation Analysis]
2 Zhou Z, Zheng J, Meng X, Wang F. Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. IJMS 2023;24:1836. [DOI: 10.3390/ijms24031836] [Reference Citation Analysis]
3 Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023;225:526-43. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Reference Citation Analysis]
4 Alharthi AF, Gouda M, Khalaf MM, Elmushyakhi A, Abou Taleb MF, Abd El-Lateef HM. Cellulose-Acetate-Based Films Modified with Ag(2)O and ZnS as Nanocomposites for Highly Controlling Biological Behavior for Wound Healing Applications. Materials (Basel) 2023;16. [PMID: 36676514 DOI: 10.3390/ma16020777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Asaduzzaman M, Schulte J, Gebhardt R. Soft Matter Engineering for the Fabrication of Functionalized Casein Microparticles. Chemie Ingenieur Technik 2023. [DOI: 10.1002/cite.202200114] [Reference Citation Analysis]
6 Patil TV, Lim K. Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_5] [Reference Citation Analysis]
7 Rani M, Devi A, Singh SP, Kumari R, Kumar A. 3D Cell Culture Techniques. Techniques in Life Science and Biomedicine for the Non-Expert 2023. [DOI: 10.1007/978-3-031-19485-6_14] [Reference Citation Analysis]
8 Stevanovic M, Vujovic S, Stanisic D, Desnica J, Ognjanovic I. The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature. Serbian Journal of Experimental and Clinical Research 2022;0. [DOI: 10.2478/sjecr-2021-0071] [Reference Citation Analysis]
9 Radmand F, Baseri M, Farsadbakhsh M, Azimi A, Dizaj SM, Sharifi S. A Novel Perspective on Tissue Engineering Potentials of Periodontal Ligament Stem Cells. TODENTJ 2022;16. [DOI: 10.2174/18742106-v16-e221006-2021-216] [Reference Citation Analysis]
10 Bahraminasab M, Doostmohammadi N, Talebi A, Arab S, Alizadeh A, Ghanbari A, Salati A. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Biomed Eng Online 2022;21:86. [PMID: 36503442 DOI: 10.1186/s12938-022-01056-w] [Reference Citation Analysis]
11 Chernozem RV, Pariy I, Surmeneva MA, Shvartsman VV, Planckaert G, Verduijn J, Ghysels S, Abalymov A, Parakhonskiy BV, Gracey E, Gonçalves A, Mathur S, Ronsse F, Depla D, Lupascu DC, Elewaut D, Surmenev RA, Skirtach AG. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide. Adv Healthc Mater 2022;:e2201726. [PMID: 36468909 DOI: 10.1002/adhm.202201726] [Reference Citation Analysis]
12 Cuartas-Marulanda D, Forero Cardozo L, Restrepo-Osorio A, Fernández-Morales P. Natural Coatings and Surface Modifications on Magnesium Alloys for Biomedical Applications. Polymers (Basel) 2022;14. [PMID: 36501691 DOI: 10.3390/polym14235297] [Reference Citation Analysis]
13 Lavanya K, Abinaya S, Selvamurugan N. Recent advances in one-dimensional nanowire-incorporated bone tissue engineering scaffolds. Materials Today Communications 2022;33:104229. [DOI: 10.1016/j.mtcomm.2022.104229] [Reference Citation Analysis]
14 Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1051678] [Reference Citation Analysis]
15 Suttiat K, Wattanutchariya W, Manaspon C. Preparation and Characterization of Porous Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) (PLA/PBAT) Scaffold with Polydopamine-Assisted Biomineralization for Bone Regeneration. Materials 2022;15:7756. [DOI: 10.3390/ma15217756] [Reference Citation Analysis]
16 Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107986] [Reference Citation Analysis]
17 Azaman FA, Zhou K, Blanes-martínez MDM, Brennan Fournet M, Devine DM. Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels 2022;8:696. [DOI: 10.3390/gels8110696] [Reference Citation Analysis]
18 Filip N, Radu I, Veliceasa B, Filip C, Pertea M, Clim A, Pinzariu AC, Drochioi IC, Hilitanu RL, Serban IL. Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives. Coatings 2022;12:1544. [DOI: 10.3390/coatings12101544] [Reference Citation Analysis]
19 Teo YC, Park EJ, Guo J, Abbas A, Smith RAA, Goh D, Yeong JPS, Cool S, Teo P. Bioactive PCL-Peptide and PLA-Peptide Brush Copolymers for Bone Tissue Engineering. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.2c00455] [Reference Citation Analysis]
20 Gharacheh H, Guvendiren M. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers (Basel) 2022;14:3788. [PMID: 36145933 DOI: 10.3390/polym14183788] [Reference Citation Analysis]
21 Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022;10:942128. [DOI: 10.3389/fbioe.2022.942128] [Reference Citation Analysis]
22 Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022;14:3410. [PMID: 36015667 DOI: 10.3390/polym14163410] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Samadi A, Salati MA, Safari A, Jouyandeh M, Barani M, Singh Chauhan NP, Golab EG, Zarrintaj P, Kar S, Seidi F, Hejna A, Saeb MR. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition 2022;33:1555-1594. [DOI: 10.1080/09205063.2022.2065409] [Reference Citation Analysis]
24 Amukarimi S, Rezvani Z, Eghtesadi N, Mozafari M. Smart biomaterials: From 3D printing to 4D bioprinting. Methods 2022;205:191-9. [PMID: 35810960 DOI: 10.1016/j.ymeth.2022.07.006] [Reference Citation Analysis]
25 Shakoor S, Kibble E, El-jawhari JJ. Bioengineering Approaches for Delivering Growth Factors: A Focus on Bone and Cartilage Regeneration. Bioengineering 2022;9:223. [DOI: 10.3390/bioengineering9050223] [Reference Citation Analysis]
26 Namanloo RA, Ommani M, Abbasi K, Alam M, Badkoobeh A, Rahbar M, Arasteh HK, Hajmohammadi E, Soufdoost RS, Mosaddad SA, Chen Q. Biomaterials in Guided Bone and Tissue Regenerations: An Update. Advances in Materials Science and Engineering 2022;2022:1-14. [DOI: 10.1155/2022/2489399] [Reference Citation Analysis]
27 Abouzeid RE, Abd El-kader AH, Salama A, Fahmy TYA, El-sakhawy M; National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt. PREPARATION AND PROPERTIES OF NOVEL BIOCOMPATIBLE PECTIN/SILICA CALCIUM PHOSPHATE HYBRIDS. Cellulose Chem Technol 2022;56:371-8. [DOI: 10.35812/cellulosechemtechnol.2022.56.33] [Reference Citation Analysis]
28 Maistrovskaia YV, Nevzorova VA, Ugay LG, Gnedenkov SV, Kotsurbei EA, Moltyh EA, Kostiv RE, Sinebryukhov SL. Bone Tissue Condition during Osteosynthesis of a Femoral Shaft Fracture Using Biodegradable Magnesium Implants with an Anticorrosive Coating in Rats with Experimental Osteoporosis. Applied Sciences 2022;12:4617. [DOI: 10.3390/app12094617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydrate Polymers 2022;283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
30 Levi S, Yen F, Baruch L, Machluf M. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.05.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022;:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Reference Citation Analysis]
32 Mohd N, Razali M, Ghazali MJ, Abu Kasim NH. 3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review. Materials 2022;15:2621. [DOI: 10.3390/ma15072621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
33 Kim SI, Kim NE, Park S, Choi JH, Lee Y, Jeon G, Song JE, Khang G. Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering. In vitro models 2022;1:197-207. [DOI: 10.1007/s44164-022-00018-9] [Reference Citation Analysis]
34 Li Z, Wang Q, Liu G. A Review of 3D Printed Bone Implants. Micromachines 2022;13:528. [DOI: 10.3390/mi13040528] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
35 Rezania N, Asadi-Eydivand M, Abolfathi N, Bonakdar S, Mehrjoo M, Solati-Hashjin M. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. J Mater Sci Mater Med 2022;33:31. [PMID: 35267105 DOI: 10.1007/s10856-022-06653-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Hung K, Chen M, Lan W, Cho Y, Saito T, Huang B, Tsai H, Hsieh C, Ou K, Lin H. Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential. Materials 2022;15:1971. [DOI: 10.3390/ma15051971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Dabasinskaite L, Krugly E, Baniukaitiene O, Ciuzas D, Martuzevicius D, Jankauskaite L, Malinauskas M, Usas A. Design and Fabrication Method of Bi-Layered Fibrous Scaffold for Cartilage Regeneration. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Fernandes DS, Jayme CC, Tedesco AC. Biopolymer‐Based Scaffolds for Bone and Tissue Engineering. Nanoengineering of Biomaterials 2022. [DOI: 10.1002/9783527832095.ch19] [Reference Citation Analysis]
39 Thijssen Q, Cornelis K, Alkaissy R, Locs J, Damme LV, Schaubroeck D, Willaert R, Snelling S, Mouthuy PA, Van Vlierberghe S. Tough Photo-Cross-Linked PCL-Hydroxyapatite Composites for Bone Tissue Engineering. Biomacromolecules 2022. [PMID: 35147420 DOI: 10.1021/acs.biomac.1c01584] [Reference Citation Analysis]
40 Li F, Li S, Liu Y, Zhang Z, Li Z. Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Adv Eng Mater. [DOI: 10.1002/adem.202101510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Machałowski T, Idaszek J, Chlanda A, Heljak M, Piasecki A, Święszkowski W, Jesionowski T. Naturally prefabricated 3D chitinous skeletal scaffold of marine demosponge origin, biomineralized ex vivo as a functional biomaterial. Carbohydr Polym 2022;275:118750. [PMID: 34742446 DOI: 10.1016/j.carbpol.2021.118750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Lavanya K, Swetha S, Selvamurugan N. Biopolymers/Ceramic-Based Nanocomposite Scaffolds for Drug Delivery in Bone Tissue Engineering. Polymeric and Natural Composites 2022. [DOI: 10.1007/978-3-030-70266-3_11] [Reference Citation Analysis]
43 Byram PK, Das L, Sunka KC, Kulkarni G, Dhara S, Chakravorty N. Silk Fibroin-Based Biomaterials in Biomedical Applications. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_8] [Reference Citation Analysis]
44 Gautam G, Kumar S, Kumar K. Processing of biomaterials for bone tissue engineering: State of the art. Materials Today: Proceedings 2022;50:2206-17. [DOI: 10.1016/j.matpr.2021.09.459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Ursino HL, James BD, Ludtka CM, Allen JB. Bone tissue engineering. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00018-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Radhakrishnan A, Sreekumaran S, Anjali S, Resmi R, Saravana RP. Emerging strategies in bone tissue engineering. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00013-7] [Reference Citation Analysis]
47 Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/5584_2022_706] [Reference Citation Analysis]
48 Choe R, Jabari E, Mahadik B, Fisher J. 3D Bioprinting and Nanotechnology for Bone Tissue Engineering. Bone Tissue Engineering 2022. [DOI: 10.1007/978-3-030-92014-2_9] [Reference Citation Analysis]
49 Pandya A, Upadhaya P, Lohakare S, Srivastava T, Mhatre S, Pulakkat S, Patravale VB. Nanobiomaterials for regenerative medicine. Nanotechnology in Medicine and Biology 2022. [DOI: 10.1016/b978-0-12-819469-0.00007-1] [Reference Citation Analysis]
50 Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021;:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research 2022;2:2100116. [DOI: 10.1002/anbr.202100116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 D'Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021;11:1731. [PMID: 34827729 DOI: 10.3390/biom11111731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone 2021;154:116256. [PMID: 34781047 DOI: 10.1016/j.bone.2021.116256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
54 Tharakan S, Khondkar S, Ilyas A. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering. Sensors (Basel) 2021;21:7477. [PMID: 34833553 DOI: 10.3390/s21227477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
55 Lombardo MDM, Mangiavini L, Peretti GM. Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective. Pharmaceutics 2021;13:1886. [PMID: 34834301 DOI: 10.3390/pharmaceutics13111886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Chernozem RV, Romanyuk KN, Grubova I, Chernozem PV, Surmeneva MA, Mukhortova YR, Wilhelm M, Ludwig T, Mathur S, Kholkin AL, Neyts E, Parakhonskiy B, Skirtach AG, Surmenev RA. Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering. Nano Energy 2021;89:106473. [DOI: 10.1016/j.nanoen.2021.106473] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
57 Woźniczka M, Błaszczak-Świątkiewicz K. New Generation of Meso and Antiprogestins (SPRMs) into the Osteoporosis Approach. Molecules 2021;26:6491. [PMID: 34770897 DOI: 10.3390/molecules26216491] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, Ngeow WC. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? Materials (Basel) 2021;14:6123. [PMID: 34683712 DOI: 10.3390/ma14206123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
59 Cal F, Sezgin Arslan T, Derkus B, Kiran F, Cengiz U, Arslan YE. Synthesis of Silica-Based Boron-Incorporated Collagen/Human Hair Keratin Hybrid Cryogels with the Potential Bone Formation Capability. ACS Appl Bio Mater 2021;4:7266-79. [PMID: 35006956 DOI: 10.1021/acsabm.1c00805] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
60 Pedrero SG, Llamas-Sillero P, Serrano-López J. A Multidisciplinary Journey towards Bone Tissue Engineering. Materials (Basel) 2021;14:4896. [PMID: 34500986 DOI: 10.3390/ma14174896] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
61 Llamas-Unzueta R, Suárez M, Fernández A, Díaz R, Montes-Morán MA, Menéndez JA. Whey-Derived Porous Carbon Scaffolds for Bone Tissue Engineering. Biomedicines 2021;9:1091. [PMID: 34572276 DOI: 10.3390/biomedicines9091091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
62 Sinha R, Sanchez A, Camara-Torres M, Uriszar-Aldaca IC, Calore AR, Harings J, Gambardella A, Ciccarelli L, Vanzanella V, Sisani M, Scatto M, Wendelbo R, Perez S, Villanueva S, Matanza A, Patelli A, Grizzuti N, Mota C, Moroni L. Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers. ACS Appl Polym Mater 2021;3:3788-99. [PMID: 34476399 DOI: 10.1021/acsapm.1c00363] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
63 Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021;9:661802. [PMID: 34327197 DOI: 10.3389/fcell.2021.661802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
64 Yamada S, Yassin MA, Schwarz T, Hansmann J, Mustafa K. Induction of osteogenic differentiation of bone marrow stromal cells on 3D polyester-based scaffolds solely by subphysiological fluidic stimulation in a laminar flow bioreactor. J Tissue Eng 2021;12:20417314211019375. [PMID: 34262684 DOI: 10.1177/20417314211019375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
65 Tafazoli Moghadam E, Yazdanian M, Alam M, Tebyanian H, Tafazoli A, Tahmasebi E, Ranjbar R, Yazdanian A, Seifalian A. Current natural bioactive materials in bone and tooth regeneration in dentistry: a comprehensive overview. Journal of Materials Research and Technology 2021;13:2078-114. [DOI: 10.1016/j.jmrt.2021.05.089] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
66 Qi P, Niu Y, Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J Cell Mol Med 2021;25:5744-52. [PMID: 33991050 DOI: 10.1111/jcmm.16595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
67 Abazari MF, Zare Karizi S, Hajati‐birgani N, Kohandani M, Torabinejad S, Nejati F, Nasiri N, Maleki MH, Mohajerani H, Mansouri V. Curcumin‐loaded PHB / PLLA nanofibrous scaffold supports osteogenesis in adipose‐derived stem cells in vitro. Polym Adv Technol 2021;32:3563-71. [DOI: 10.1002/pat.5366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. Journal of Controlled Release 2021;333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
69 Abhinandan R, Pranav Adithya S, Saleth Sidharthan D, Balagangadharan K, Selvamurugan N. Synthesis and characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2021;203:111771. [PMID: 33894648 DOI: 10.1016/j.colsurfb.2021.111771] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
70 Sabouri E, Rezaie Z, Enderami SE, Mirahmadi M, Askari M. Different osteoconductivity of PLLA / PHB composite nanofibers prepared by one‐ and two‐nozzle electrospinning. Polym Adv Technol 2021;32:1783-92. [DOI: 10.1002/pat.5215] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021;13:1105. [PMID: 33808492 DOI: 10.3390/polym13071105] [Cited by in Crossref: 151] [Cited by in F6Publishing: 164] [Article Influence: 75.5] [Reference Citation Analysis]
72 Turkoglu Sasmazel H, Alazzawi M, Kadim Abid Alsahib N. Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules 2021;26:1665. [PMID: 33802663 DOI: 10.3390/molecules26061665] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
73 Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021;123:123-53. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
74 Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv Funct Mater 2021;31:2010609. [DOI: 10.1002/adfm.202010609] [Cited by in Crossref: 110] [Cited by in F6Publishing: 115] [Article Influence: 55.0] [Reference Citation Analysis]
75 Yang G, Mahadik B, Choi JY, Yu JR, Mollot T, Jiang B, He X, Fisher JP. Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomater 2021;121:204-13. [PMID: 33271356 DOI: 10.1016/j.actbio.2020.11.040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
76 Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021;6:2412-38. [PMID: 33553825 DOI: 10.1016/j.bioactmat.2021.01.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
77 Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. Mater Sci Eng C Mater Biol Appl 2021;122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
78 Sybil D, Datta S, Raza U. Injectable Biomaterials for Alveolar Bone Regeneration. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_7] [Reference Citation Analysis]
79 Qian J, Lin Z, Liu Y, Wang Z, Lin Y, Gong C, Ruan R, Zhang J, Yang H. Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine 2021;2:260-79. [DOI: 10.1016/j.smaim.2021.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
80 Saraswathy M, Krishnaswami V, Ragini DD. Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications. Biomaterials in Tissue Engineering and Regenerative Medicine 2021. [DOI: 10.1007/978-981-16-0002-9_10] [Reference Citation Analysis]
81 Badwelan M, Alkindi M, Alghamdi O, Saeed WS, Al-Odayni AB, Alrahlah A, Aouak T. Poly(δ-valerolactone)/Poly(ethylene-co-vinylalcohol)/β-Tri-calcium Phosphate Composite as Scaffolds: Preparation, Properties, and In Vitro Amoxicillin Release. Polymers (Basel) 2020;13:E46. [PMID: 33374480 DOI: 10.3390/polym13010046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Hsu EL, Stock SR. Growth Factors, Carrier Materials, and Bone Repair. Handb Exp Pharmacol 2020;262:121-56. [PMID: 32562058 DOI: 10.1007/164_2020_371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020;8:598607. [PMID: 33381499 DOI: 10.3389/fbioe.2020.598607] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
84 Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, Liu Q, Zhang Y. Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020;2020:8810813. [PMID: 33488736 DOI: 10.1155/2020/8810813] [Cited by in Crossref: 32] [Cited by in F6Publishing: 42] [Article Influence: 10.7] [Reference Citation Analysis]
85 Zhou Z, Lennon A, Buchanan F, Mccarthy HO, Dunne N. Binder jetting additive manufacturing of hydroxyapatite powders: Effects of adhesives on geometrical accuracy and green compressive strength. Additive Manufacturing 2020;36:101645. [DOI: 10.1016/j.addma.2020.101645] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
86 Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020;12:E2858. [PMID: 33260490 DOI: 10.3390/polym12122858] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
87 Martinez-Marquez D, Delmar Y, Sun S, Stewart RA. Exploring Macroporosity of Additively Manufactured Titanium Metamaterials for Bone Regeneration with Quality by Design: A Systematic Literature Review. Materials (Basel) 2020;13:E4794. [PMID: 33121025 DOI: 10.3390/ma13214794] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
88 Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020;25:E4802. [PMID: 33086674 DOI: 10.3390/molecules25204802] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
89 Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020;8:589964. [PMID: 33123519 DOI: 10.3389/fbioe.2020.589964] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
90 Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020;7:E115. [PMID: 32957528 DOI: 10.3390/bioengineering7030115] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
91 Suethao S, Shah DU, Smitthipong W. Recent Progress in Processing Functionally Graded Polymer Foams. Materials (Basel) 2020;13:E4060. [PMID: 32933128 DOI: 10.3390/ma13184060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
92 Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020;8:781. [PMID: 32984311 DOI: 10.3389/fcell.2020.00781] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
93 Aslam Khan MU, Mehboob H, Abd Razak SI, Yahya MY, Mohd Yusof AH, Ramlee MH, Sahaya Anand TJ, Hassan R, Aziz A, Amin R. Development of Polymeric Nanocomposite (Xyloglucan-co-Methacrylic Acid/Hydroxyapatite/SiO2) Scaffold for Bone Tissue Engineering Applications-In-Vitro Antibacterial, Cytotoxicity and Cell Culture Evaluation. Polymers (Basel) 2020;12:E1238. [PMID: 32485926 DOI: 10.3390/polym12061238] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
94 Swetha S, Lavanya K, Sruthi R, Selvamurugan N. An insight into cell-laden 3D-printed constructs for bone tissue engineering. J Mater Chem B 2020;8:9836-62. [DOI: 10.1039/d0tb02019b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
95 Golubevas R, Stankeviciute Z, Zarkov A, Golubevas R, Hansson L, Raudonis R, Kareiva A, Garskaite E. Acrylate–gelatin–carbonated hydroxyapatite (cHAP) composites for dental bone-tissue applications. Mater Adv 2020;1:1675-84. [DOI: 10.1039/d0ma00498g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]