BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019;11:E2008. [PMID: 31817133 DOI: 10.3390/polym11122008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Talebi N, Lopes D, Lopes J, Macário-soares A, Dan AK, Ghanbari R, Kahkesh KH, Peixoto D, Giram PS, Raza F, Veiga F, Sharifi E, Hamishehkar H, Paiva-santos AC. Natural polymeric nanofibers in transdermal drug delivery. Applied Materials Today 2023;30:101726. [DOI: 10.1016/j.apmt.2022.101726] [Reference Citation Analysis]
2 Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomol Ther (Seoul) 2023;31:16-26. [PMID: 36122910 DOI: 10.4062/biomolther.2022.080] [Reference Citation Analysis]
3 Kyuchyuk S, Paneva D, Manolova N, Rashkov I, Karashanova D, Markova N. Core/Double-Sheath Composite Fibers from Poly(ethylene oxide), Poly(L-lactide) and Beeswax by Single-Spinneret Electrospinning. Polymers (Basel) 2022;14. [PMID: 36433168 DOI: 10.3390/polym14225036] [Reference Citation Analysis]
4 Yu P, Zhang J, Long J. Coaxial mechano‐electrospinning of oriented fibers with core‐shell structure for tactile sensing. Polymers for Advanced Techs 2022. [DOI: 10.1002/pat.5933] [Reference Citation Analysis]
5 Liu C, Deng D, Gao J, Jin S, Zuo Y, Li Y, Li J. Construction and Properties of Simvastatin and Calcium Phosphate Dual-Loaded Coaxial Fibrous Membranes with Osteogenic and Angiogenic Functions. J Bionic Eng. [DOI: 10.1007/s42235-022-00233-w] [Reference Citation Analysis]
6 Zhan A, Chen L, Sun W, Tang Y, Chen J, Yu D, Zhang W. Enhancement of diabetic wound healing using a core-shell nanofiber platform with sequential antibacterial, angiogenic, and collagen deposition activities. Materials & Design 2022;218:110660. [DOI: 10.1016/j.matdes.2022.110660] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Gomes MR, Castelo Ferreira F, Sanjuan-alberte P. Electrospun piezoelectric scaffolds for cardiac tissue engineering. Biomaterials Advances 2022;137:212808. [DOI: 10.1016/j.bioadv.2022.212808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lee C, Hsieh M, Roth JG, Fu X, Lu C, Hung K, Kuo C, Liu S. Hybrid Core–Shell Nanofibrous Scaffolds/Stents Deliver Angiotensin II Receptor Blocker to Treat Diabetic Artery Disease. ACS Appl Polym Mater 2022;4:4199-207. [DOI: 10.1021/acsapm.2c00186] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kurpanik R, Lechowska-Liszka A, Mastalska-Popławska J, Nocuń M, Rapacz-Kmita A, Ścisłowska-Czarnecka A, Stodolak-Zych E. Effect of Ionic and Non-Ionic Surfactant on Bovine Serum Albumin Encapsulation and Biological Properties of Emulsion-Electrospun Fibers. Molecules 2022;27:3232. [PMID: 35630708 DOI: 10.3390/molecules27103232] [Reference Citation Analysis]
10 Ouerghemmi S, Degoutin S, Maton M, Tabary N, Cazaux F, Neut C, Blanchemain N, Martel B. Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers (Basel) 2022;14:1955. [PMID: 35631838 DOI: 10.3390/polym14101955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li D, Yue G, Li S, Liu J, Li H, Gao Y, Liu J, Hou L, Liu X, Cui Z, Wang N, Bai J, Zhao Y. Fabrication and Applications of Multi-Fluidic Electrospinning Multi-Structure Hollow and Core–Shell Nanofibers. Engineering 2022. [DOI: 10.1016/j.eng.2021.02.025] [Reference Citation Analysis]
12 Ghosh A, Orasugh JT, Chattopadhyay D, Ghosh S. Electrospun nanofibres: A new vista for detection and degradation of harmful endocrine-disrupting chemicals. Groundwater for Sustainable Development 2022;16:100716. [DOI: 10.1016/j.gsd.2021.100716] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Pryadko AS, Botvin VV, Mukhortova YR, Pariy I, Wagner DV, Laktionov PP, Chernonosova VS, Chelobanov BP, Chernozem RV, Surmeneva MA, Kholkin AL, Surmenev RA. Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications. Polymers 2022;14:529. [DOI: 10.3390/polym14030529] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics 2022;14:164. [PMID: 35057060 DOI: 10.3390/pharmaceutics14010164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
15 Kazsoki A, Palcsó B, Alpár A, Snoeck R, Andrei G, Zelkó R. Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. Int J Pharm 2022;611:121354. [PMID: 34883208 DOI: 10.1016/j.ijpharm.2021.121354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Deng R, Luo Z, Rao Z, Lin Z, Chen S, Zhou J, Zhu Q, Liu X, Bai Y, Quan D. Decellularized Extracellular Matrix Containing Electrospun Fibers for Nerve Regeneration: A Comparison Between Core–Shell Structured and Preblended Composites. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00124-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Mounesan M, Jalali S, Montazer M. Biotextiles and their applications for drug release. Medical Textiles from Natural Resources 2022. [DOI: 10.1016/b978-0-323-90479-7.00021-x] [Reference Citation Analysis]
18 Abdullah MF, Andriyana A, Muhamad F, Ang BC. Effect of core-to-shell flowrate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. Polymer 2021;237:124378. [DOI: 10.1016/j.polymer.2021.124378] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Özel C, Şengel T, Ebrahimi A, Apaydin E, Ghorbanpoor H, Eker Sariboyaci A, Uysal O, Ozkurt M, Avci H. DESIGN ALGINATE BASED BLENDS FOR LIVING COMPOSITE FIBERS TO PROMOTE WOUND HEALING. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering 2021. [DOI: 10.18038/estubtda.984324] [Reference Citation Analysis]
20 Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021;:1-21. [PMID: 34251971 DOI: 10.1080/03091902.2021.1893396] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
21 Ura DP, Berniak K, Stachewicz U. Critical length reinforcement in core-shell electrospun fibers using composite strategies. Composites Science and Technology 2021;211:108867. [DOI: 10.1016/j.compscitech.2021.108867] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
22 Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021;269:118351. [PMID: 34294355 DOI: 10.1016/j.carbpol.2021.118351] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
23 Chen X, Li H, Lu W, Guo Y. Antibacterial Porous Coaxial Drug-Carrying Nanofibers for Sustained Drug-Releasing Applications. Nanomaterials (Basel) 2021;11:1316. [PMID: 34067723 DOI: 10.3390/nano11051316] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
24 Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Progress in Materials Science 2021;117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Cited by in Crossref: 157] [Cited by in F6Publishing: 172] [Article Influence: 78.5] [Reference Citation Analysis]
25 Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021;26:699. [PMID: 33572728 DOI: 10.3390/molecules26030699] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Slivac I, Zdraveva E, Ivančić F, Žunar B, Holjevac Grgurić T, Gaurina Srček V, Svetec IK, Dolenec T, Bajsić EG, Tominac Trcin M, Mijović B. Bioactivity Comparison of Electrospun PCL Mats and Liver Extracellular Matrix as Scaffolds for HepG2 Cells. Polymers (Basel) 2021;13:279. [PMID: 33467025 DOI: 10.3390/polym13020279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Afsharian YP, Rahimnejad M. Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polymer Testing 2021;93:106952. [DOI: 10.1016/j.polymertesting.2020.106952] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
28 Zhao K, Yang Y, Kang S, Yu D. Solidifying Essential Balm into Electrospun Core-sheath Nanofibers for Prolonged Release. CCS 2020;1:122-31. [DOI: 10.2174/2210298101666201012121522] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
29 Ferraris S, Spriano S, Scalia AC, Cochis A, Rimondini L, Cruz-Maya I, Guarino V, Varesano A, Vineis C. Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers (Basel) 2020;12:E2896. [PMID: 33287236 DOI: 10.3390/polym12122896] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
30 Mahalingam S, Matharu R, Homer-vanniasinkam S, Edirisinghe M. Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Applied Physics Reviews 2020;7:041302. [DOI: 10.1063/5.0008310] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
31 Ding Y, Dou C, Chang S, Xie Z, Yu DG, Liu Y, Shao J. Core-Shell Eudragit S100 Nanofibers Prepared via Triaxial Electrospinning to Provide a Colon-Targeted Extended Drug Release. Polymers (Basel) 2020;12:E2034. [PMID: 32906728 DOI: 10.3390/polym12092034] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 22.0] [Reference Citation Analysis]
32 Ji X, Li R, Jia W, Liu G, Luo Y, Cheng Z. Co-Axial Fibers with Janus-Structured Sheaths by Electrospinning Release Corn Peptides for Wound Healing. ACS Appl Bio Mater 2020;3:6430-8. [DOI: 10.1021/acsabm.0c00860] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
33 Mahdieh Z, Mitra S, Holian A. Core–Shell Electrospun Fibers with an Improved Open Pore Structure for Size-Controlled Delivery of Nanoparticles. ACS Appl Polym Mater 2020;2:4004-15. [DOI: 10.1021/acsapm.0c00643] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
34 Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. Adv Therap 2021;4:2000096. [DOI: 10.1002/adtp.202000096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
35 Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2020;12:E1566. [PMID: 32679750 DOI: 10.3390/polym12071566] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
36 Kupka V, Dvořáková E, Manakhov A, Michlíček M, Petruš J, Vojtová L, Zajíčková L. Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers (Basel) 2020;12:E1403. [PMID: 32580496 DOI: 10.3390/polym12061403] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
37 Song J, Kim M, Lee H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers (Basel) 2020;12:E1386. [PMID: 32575746 DOI: 10.3390/polym12061386] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
38 Kowalczyk T. Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers (Basel) 2020;12:E1087. [PMID: 32397603 DOI: 10.3390/polym12051087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
39 Miranda CS, Ribeiro ARM, Homem NC, Felgueiras HP. Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics (Basel) 2020;9:E174. [PMID: 32290536 DOI: 10.3390/antibiotics9040174] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
40 Teixeira MA, Paiva MC, Amorim MTP, Felgueiras AHP. Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials (Basel) 2020;10:E557. [PMID: 32204521 DOI: 10.3390/nano10030557] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]