BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics 2020;12:E290. [PMID: 32210184 DOI: 10.3390/pharmaceutics12030290] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 31.5] [Reference Citation Analysis]
Number Citing Articles
1 Ramos-de-la-peña AM, Contreras-esquivel JC, Aguilar O, González-valdez J. Structural and bioactive roles of fucoidan in nanogel delivery systems. A review. Carbohydrate Polymer Technologies and Applications 2022;4:100235. [DOI: 10.1016/j.carpta.2022.100235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Degirmenci A, Ipek H, Sanyal R, Sanyal A. Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. European Polymer Journal 2022;181:111645. [DOI: 10.1016/j.eurpolymj.2022.111645] [Reference Citation Analysis]
3 Liwinska W, Waleka-Bagiel E, Stojek Z, Karbarz M, Zabost E. Enzyme-triggered- and tumor-targeted delivery with tunable, methacrylated poly(ethylene glycols) and hyaluronic acid hybrid nanogels. Drug Deliv 2022;29:2561-78. [PMID: 35938558 DOI: 10.1080/10717544.2022.2105443] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Duan Q, Zhu Y, Jia H, Guo Y, Zhang X, Gu R, Li C, Wu F. Platinum‐Coordinated Dual‐Responsive Nanogels for Universal Drug Delivery and Combination Cancer Therapy. Small 2022. [DOI: 10.1002/smll.202203260] [Reference Citation Analysis]
5 Zhang Z, Chen J, Zou L, Tang J, Zheng J, Luo M, Wang G, Liang D, Li Y, Chen B, Yan H, Ding W. Preparation, Characterization, and Staphylococcus aureus Biofilm Elimination Effect of Baicalein-Loaded β-Cyclodextrin-Grafted Chitosan Nanoparticles. IJN 2022;Volume 17:5287-5302. [DOI: 10.2147/ijn.s383182] [Reference Citation Analysis]
6 Ullah A, Lim SI. Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. Journal of Drug Delivery Science and Technology 2022;77:103879. [DOI: 10.1016/j.jddst.2022.103879] [Reference Citation Analysis]
7 Zhang Y, Li Z, Wang Z, Zhang L, Zeng Z. A Comparison of RNA Interference via Injection and Feeding in Honey Bees. Insects 2022;13:928. [DOI: 10.3390/insects13100928] [Reference Citation Analysis]
8 Behera A, Mohapatra RK. Intelligent Nanomaterials for Medicine. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch15] [Reference Citation Analysis]
9 Ali AA, Al-Othman A, Al-Sayah M. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022:S0168-3659(22)00628-9. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Reference Citation Analysis]
10 Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022;13:874510. [DOI: 10.3389/fphar.2022.874510] [Reference Citation Analysis]
11 Balogh TS, Bonturim E, Vieira LD, Lugão AB, Kadlubowski S. Synthesis of poly(N-vinyl pyrrolidone) (PVP) nanogels by gamma irradiation using different saturation atmospheres. Radiation Physics and Chemistry 2022;198:110238. [DOI: 10.1016/j.radphyschem.2022.110238] [Reference Citation Analysis]
12 Dhaini B, Wagner L, Moinard M, Daouk J, Arnoux P, Schohn H, Schneller P, Acherar S, Hamieh T, Frochot C. Importance of Rose Bengal Loaded with Nanoparticles for Anti-Cancer Photodynamic Therapy. Pharmaceuticals 2022;15:1093. [DOI: 10.3390/ph15091093] [Reference Citation Analysis]
13 Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol 2022;13:970489. [DOI: 10.3389/fendo.2022.970489] [Reference Citation Analysis]
14 Nizardo NM, Alimin DF, Lestari MLAD. Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels. Des Monomers Polym 2022;25:155-64. [PMID: 35711620 DOI: 10.1080/15685551.2022.2086412] [Reference Citation Analysis]
15 Yang L, Ling J, Wang N, Jiang Y, Lu Y, Yang L, Ouyang X. Delivery of Doxorubicin by Dual Responsive Carboxymethyl Chitosan Based Nanogel and In Vitro Performance. Materials Today Communications 2022. [DOI: 10.1016/j.mtcomm.2022.103781] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Muthukrishnan L. Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. Food Bioprocess Technol. [DOI: 10.1007/s11947-022-02807-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv 2022;:107936. [PMID: 35276253 DOI: 10.1016/j.biotechadv.2022.107936] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
18 Nasr NEH, Elmeshad AN, Fares AR. Nanocarrier Systems in Taste Masking. Sci Pharm 2022;90:20. [DOI: 10.3390/scipharm90010020] [Reference Citation Analysis]
19 Desu PK, Karmakar B, Kondi V, Tiwari ON, Halder G. Optimizing formulation of green tea extract-loaded chitosan nanogel. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02453-w] [Reference Citation Analysis]
20 Yang Q, Peng J, Xiao H, Xu X, Qian Z. Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022;278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
21 Dalir Abdolahinia E, Barati G, Ranjbar-navazi Z, Kadkhoda J, Islami M, Hashemzadeh N, Maleki Dizaj S, Sharifi S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology 2022;68:103109. [DOI: 10.1016/j.jddst.2022.103109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
22 Saraogi GK, Tholiya S, Mishra Y, Mishra V, Albutti A, Nayak P, Tambuwala MM. Formulation Development and Evaluation of Pravastatin-Loaded Nanogel for Hyperlipidemia Management. Gels 2022;8:81. [DOI: 10.3390/gels8020081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ningthoujam SS. Preclinical, clinical, and patented nanodrug delivery systems. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00003-x] [Reference Citation Analysis]
24 Adekoya OC, Yibowei ME, Adekoya GJ, Sadiku ER, Hamam Y, Ray SS. A mini-review on the application of machine learning in polymer nanogels for drug delivery. Materials Today: Proceedings 2022;62:S141-4. [DOI: 10.1016/j.matpr.2022.02.101] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Paul S, Hmar EBL, Pathak H, Sharma HK. An overview on nanocarriers. Nanocarriers for Drug-Targeting Brain Tumors 2022. [DOI: 10.1016/b978-0-323-90773-6.00004-x] [Reference Citation Analysis]
26 García MC. Stimuli-responsive nanogels as promising carriers for controlled delivery of anticancer therapeutics. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00005-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Devi L, Chopra H, Gaba P. Nanohydrogels for targeted drug delivery systems. Bionanotechnology : Emerging Applications of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-823915-5.00003-4] [Reference Citation Analysis]
28 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
29 Peng S, Xiao F, Chen M, Gao H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2103836. [PMID: 34796689 DOI: 10.1002/advs.202103836] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
30 Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjugate Chem 2022;33:87-96. [DOI: 10.1021/acs.bioconjchem.1c00587] [Reference Citation Analysis]
31 Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2021. [PMID: 34967608 DOI: 10.1021/acs.bioconjchem.1c00587] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
32 Hladysh S, Oleshchuk D, Dvořáková J, Šeděnková I, Filipová M, Pobořilová Z, Pánek J, Proks V. Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. J of Applied Polymer Sci. [DOI: 10.1002/app.52099] [Reference Citation Analysis]
33 Low SS, Yew M, Lim CN, Chai WS, Low LE, Manickam S, Tey BT, Show PL. Sonoproduction of nanobiomaterials - A critical review. Ultrason Sonochem 2021;82:105887. [PMID: 34954629 DOI: 10.1016/j.ultsonch.2021.105887] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
34 Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Halder J, Pradhan D, Kar B, Ghosh G, Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine 2021;:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
36 Haider M, Zaki KZ, El Hamshary MR, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
37 Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly(N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021;13:1654. [PMID: 34683947 DOI: 10.3390/pharmaceutics13101654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Martín Giménez VM, Arya G, Zucchi IA, Galante MJ, Manucha W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. Soft Matter 2021;17:8577-84. [PMID: 34580698 DOI: 10.1039/d1sm00999k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Bonaccorso A, Carbone C, Tomasello B, Italiani P, Musumeci T, Puglisi G, Pignatello R. Optimization of dextran sulfate/poly-l-lysine based nanogels polyelectrolyte complex for intranasal ovalbumin delivery. Journal of Drug Delivery Science and Technology 2021;65:102678. [DOI: 10.1016/j.jddst.2021.102678] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Wang Z, Li X, Zhang X, Sheng R, Lin Q, Song W, Hao L. Novel Contact Lenses Embedded with Drug-Loaded Zwitterionic Nanogels for Extended Ophthalmic Drug Delivery. Nanomaterials (Basel) 2021;11:2328. [PMID: 34578644 DOI: 10.3390/nano11092328] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
41 Ismail SH, Hamdy A, Ismail TA, Mahboub HH, Mahmoud WH, Daoush WM. Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals 2021;11:1092. [DOI: 10.3390/cryst11091092] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
42 Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. Starch ‐ Stärke 2021;73:2100011. [DOI: 10.1002/star.202100011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021;13:1151. [PMID: 34452113 DOI: 10.3390/pharmaceutics13081151] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
44 Yang HY, Meng Du J, Jang MS, Mo XW, Sun XS, Lee DS, Lee JH, Fu Y. CD44-Targeted and Enzyme-Responsive Photo-Cross-Linked Nanogels with Enhanced Stability for In Vivo Protein Delivery. Biomacromolecules 2021;22:3590-600. [PMID: 34286578 DOI: 10.1021/acs.biomac.1c00653] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
45 Raj S, Muthu D, Isaac RSR, Ramakrishnan S, S AE, Vallinayagam S. Nanomedicinary evaluation of calotropis procera mediated silver nanoparticle on skin cancer cell line for microbes-front line analysis. Journal of Molecular Structure 2021;1235:130237. [DOI: 10.1016/j.molstruc.2021.130237] [Reference Citation Analysis]
46 Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021;604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wan Y, Yu W, Li J, Peng N, Ding X, Wang Y, Zou T, Cheng Y, Liu Y. Multi-functional carboxymethyl chitin-based nanoparticles for modulation of tumor-associated macrophage polarity. Carbohydr Polym 2021;267:118245. [PMID: 34119189 DOI: 10.1016/j.carbpol.2021.118245] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Liu L, Luan S, Zhang C, Wang R, Zhang Y, Zhang M, Sheng Q, Han G, Wang T, Song S. Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels. Int J Biol Macromol 2021;183:369-78. [PMID: 33932413 DOI: 10.1016/j.ijbiomac.2021.04.161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
49 Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021;13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 62.0] [Reference Citation Analysis]
50 Yang J, Shen M, Luo Y, Wu T, Chen X, Wang Y, Xie J. Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science & Technology 2021;110:822-32. [DOI: 10.1016/j.tifs.2021.02.032] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 43.0] [Reference Citation Analysis]
51 Mauri E, Giannitelli SM, Trombetta M, Rainer A. Synthesis of Nanogels: Current Trends and Future Outlook. Gels 2021;7:36. [PMID: 33805279 DOI: 10.3390/gels7020036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
52 Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Ex 2021;2:012006. [DOI: 10.1088/2632-959x/abeb4b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
53 Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021;11:395. [PMID: 33800172 DOI: 10.3390/biom11030395] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
54 Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021;9:942-59. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
55 Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. Nanomaterials (Basel) 2021;11:396. [PMID: 33557177 DOI: 10.3390/nano11020396] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 28.0] [Reference Citation Analysis]
56 Iyer S, Das A. Responsive nanogels for anti-cancer therapy. Materials Today: Proceedings 2021;44:2330-2333. [DOI: 10.1016/j.matpr.2020.12.415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021;11:614-48. [PMID: 33391496 DOI: 10.7150/thno.47007] [Cited by in Crossref: 86] [Cited by in F6Publishing: 94] [Article Influence: 86.0] [Reference Citation Analysis]
58 Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Mater Sci Eng C Mater Biol Appl 2021;118:111536. [PMID: 33255089 DOI: 10.1016/j.msec.2020.111536] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 18.0] [Reference Citation Analysis]
59 Buosi FS, Alaimo A, Di Santo MC, Elías F, García Liñares G, Acebedo SL, Castañeda Cataña MA, Spagnuolo CC, Lizarraga L, Martínez KD, Pérez OE. Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules 2020;165:804-21. [DOI: 10.1016/j.ijbiomac.2020.09.234] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
60 Basak S. The Age of Multistimuli-responsive Nanogels: The Finest Evolved Nano Delivery System in Biomedical Sciences. Biotechnol Bioproc E 2020;25:655-69. [DOI: 10.1007/s12257-020-0152-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
61 Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020;12:E874. [PMID: 32937793 DOI: 10.3390/pharmaceutics12090874] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
62 Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020;328:171-91. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
63 Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020;6:E20. [PMID: 32635573 DOI: 10.3390/gels6030020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
64 Setayesh A, Bagheri F, Boddohi S. Self-assembled formation of chondroitin sulfate-based micellar nanogel for curcumin delivery to breast cancer cells. Int J Biol Macromol 2020;161:771-8. [PMID: 32544591 DOI: 10.1016/j.ijbiomac.2020.06.108] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
65 Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, Hennink WE, Deckers R. A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated β-Glucuronidase. Pharmaceutics 2020;12:E536. [PMID: 32532061 DOI: 10.3390/pharmaceutics12060536] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
66 Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020;10:221-32. [PMID: 32612868 DOI: 10.1016/j.jpha.2020.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]