1 |
Eswaran L, Kazimirsky G, Yehuda R, Byk G. A New Strategy for Nucleic Acid Delivery and Protein Expression Using Biocompatible Nanohydrogels of Predefined Sizes. Pharmaceutics 2023;15:961. [DOI: 10.3390/pharmaceutics15030961] [Reference Citation Analysis]
|
2 |
Pannucci P, Jefferson SR, Hampshire J, Cooper SL, Hill SJ, Woolard J. COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. IJMS 2023;24:5374. [DOI: 10.3390/ijms24065374] [Reference Citation Analysis]
|
3 |
Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023;11:2063-77. [PMID: 36794598 DOI: 10.1039/d2tb02455a] [Reference Citation Analysis]
|
4 |
Papaioannou NY, Patsali P, Naiisseh B, Papasavva PL, Koniali L, Kurita R, Nakamura Y, Christou S, Sitarou M, Mussolino C, Cathomen T, Kleanthous M, Lederer CW. High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Front Genome Ed 2023;5. [DOI: 10.3389/fgeed.2023.1141618] [Reference Citation Analysis]
|
5 |
Khan NT, Zinnia MA, Islam ABMMK. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J Biomol Struct Dyn 2023;41:1617-38. [PMID: 34994279 DOI: 10.1080/07391102.2021.2024253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1853. [PMID: 36193561 DOI: 10.1002/wnan.1853] [Reference Citation Analysis]
|
7 |
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1856. [PMID: 36180107 DOI: 10.1002/wnan.1856] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Volpini L, Monaco F, Santarelli L, Neuzil J, Tomasetti M. Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. Aspects of Molecular Medicine 2023. [DOI: 10.1016/j.amolm.2023.100005] [Reference Citation Analysis]
|
9 |
Mirtaleb MS, Falak R, Heshmatnia J, Bakhshandeh B, Taheri RA, Soleimanjahi H, Zolfaghari Emameh R. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int Immunopharmacol 2023;117:109934. [PMID: 36867924 DOI: 10.1016/j.intimp.2023.109934] [Reference Citation Analysis]
|
10 |
Solodushko V, Fouty B. Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther 2023;:1-8. [PMID: 36828937 DOI: 10.1038/s41434-023-00391-4] [Reference Citation Analysis]
|
11 |
Husseini RA, Abe N, Hara T, Abe H, Kogure K. Use of Iontophoresis Technology for Transdermal Delivery of a Minimal mRNA Vaccine as a Potential Melanoma Therapeutic. Biol Pharm Bull 2023;46:301-8. [PMID: 36724958 DOI: 10.1248/bpb.b22-00746] [Reference Citation Analysis]
|
12 |
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023;15. [PMID: 36839825 DOI: 10.3390/pharmaceutics15020504] [Reference Citation Analysis]
|
13 |
Chen Y, Mach M, Shokouhi A, Yoh HZ, Bishop DC, Murayama T, Suu K, Morikawa Y, Barry SC, Micklethwaite K, Elnathan R, Voelcker NH. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Materials Today 2023. [DOI: 10.1016/j.mattod.2023.02.009] [Reference Citation Analysis]
|
14 |
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA ‐based Therapeutics: Challenges and Opportunities. Bioengineering & Transla Med 2023. [DOI: 10.1002/btm2.10492] [Reference Citation Analysis]
|
15 |
Krause W. mRNA-From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines 2023;11. [PMID: 36830845 DOI: 10.3390/biomedicines11020308] [Reference Citation Analysis]
|
16 |
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023;11:6. [PMID: 36650562 DOI: 10.1186/s40364-023-00449-w] [Reference Citation Analysis]
|
17 |
Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio Med Chem Au 2023. [DOI: 10.1021/acsbiomedchemau.2c00073] [Reference Citation Analysis]
|
18 |
Miliotou AN, Foltopoulou PF, Ingendoh-Tsakmakidis A, Tsiftsoglou AS, Vizirianakis IS, Pappas IS, Papadopoulou LC. Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023;15. [PMID: 36678915 DOI: 10.3390/pharmaceutics15010286] [Reference Citation Analysis]
|
19 |
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023;:e0024121. [PMID: 36625671 DOI: 10.1128/cmr.00241-21] [Reference Citation Analysis]
|
20 |
Hossaini Alhashemi S, Ahmadi F, Dehshahri A. Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochemistry 2023;124:269-279. [DOI: 10.1016/j.procbio.2022.12.002] [Reference Citation Analysis]
|
21 |
Puhl DL, Funnell JL, Fink TD, Swaminathan A, Oudega M, Zha RH, Gilbert RJ. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater 2023;155:370-85. [PMID: 36423820 DOI: 10.1016/j.actbio.2022.11.025] [Reference Citation Analysis]
|
22 |
Xin X, Huang W. mRNA-Based Cancer Therapy and Challenges. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_204-1] [Reference Citation Analysis]
|
23 |
Ji A, Xu M, Pan Y, Diao L, Ma L, Qian L, Cheng J, Liu M. Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer. Pharm Res 2023;40:265-79. [PMID: 36451070 DOI: 10.1007/s11095-022-03445-1] [Reference Citation Analysis]
|
24 |
Younis MA, Sato Y, Elewa YHA, Kon Y, Harashima H. Self-homing nanocarriers for mRNA delivery to the activated hepatic stellate cells in liver fibrosis. J Control Release 2023;353:685-98. [PMID: 36521688 DOI: 10.1016/j.jconrel.2022.12.020] [Reference Citation Analysis]
|
25 |
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023;157:113977. [PMID: 36370519 DOI: 10.1016/j.biopha.2022.113977] [Reference Citation Analysis]
|
26 |
Maron-gutierrez T, Lopes-pacheco M, Rocco PRM. Advanced Therapies for Patients with COVID-19. Interdisciplinary Biotechnological Advances 2023. [DOI: 10.1007/978-981-19-8342-9_5] [Reference Citation Analysis]
|
27 |
Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccin Immunother 2022;18:2040330. [PMID: 35321627 DOI: 10.1080/21645515.2022.2040330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Colunga-Saucedo M, Rubio-Hernandez EI, Coronado-Ipiña MA, Rosales-Mendoza S, Castillo CG, Comas-Garcia M. Construction of a Chikungunya Virus, Replicon, and Helper Plasmids for Transfection of Mammalian Cells. Viruses 2022;15. [PMID: 36680173 DOI: 10.3390/v15010132] [Reference Citation Analysis]
|
29 |
Ozaka S, Kobayashi T, Mizukami K, Murakami K. COVID-19 vaccination and liver disease. World J Gastroenterol 2022; 28(48): 6791-6810 [DOI: 10.3748/wjg.v28.i48.6791] [Reference Citation Analysis]
|
30 |
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022;10. [PMID: 36560560 DOI: 10.3390/vaccines10122150] [Reference Citation Analysis]
|
31 |
Okuyama R. Nurturing Deep Tech to Solve Social Problems: Learning from COVID-19 mRNA Vaccine Development. Pathogens 2022;11. [PMID: 36558803 DOI: 10.3390/pathogens11121469] [Reference Citation Analysis]
|
32 |
Melo ARDS, de Macêdo LS, Invenção MDCV, de Moura IA, da Gama MATM, de Melo CML, Silva AJD, Batista MVA, Freitas AC. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes (Basel) 2022;13. [PMID: 36553554 DOI: 10.3390/genes13122287] [Reference Citation Analysis]
|
33 |
O'Connell CD, Duchi S, Onofrillo C, Caballero-Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022;11:e2201305. [PMID: 36541723 DOI: 10.1002/adhm.202201305] [Reference Citation Analysis]
|
34 |
Huang Y, Yang M, Wang N, Li S, Liu Z, Li Z, Ji Z, Li B. Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances 2022;16:100295. [DOI: 10.1016/j.mtadv.2022.100295] [Reference Citation Analysis]
|
35 |
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, Liu G, Ying Z, Yu X, Feng H, Yi H, Wen Q, Jin T, Cheng K, Zhao X, Ge M. Lipid-Peptide-mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. Adv Sci (Weinh) 2023;10:e2204334. [PMID: 36453580 DOI: 10.1002/advs.202204334] [Reference Citation Analysis]
|
36 |
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022;14. [PMID: 36559175 DOI: 10.3390/pharmaceutics14122682] [Reference Citation Analysis]
|
37 |
Minkner R, Boonyakida J, Park EY, Wätzig H. Oligonucleotide separation techniques for purification and analysis: What can we learn for today's tasks? Electrophoresis 2022;43:2402-27. [PMID: 36285667 DOI: 10.1002/elps.202200079] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022;11. [PMID: 36558778 DOI: 10.3390/pathogens11121444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Gupta M, Wahi A, Sharma P, Nagpal R, Raina N, Kaurav M, Bhattacharya J, Rodrigues Oliveira SM, Dolma KG, Paul AK, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Nissapatorn V. Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022;10. [PMID: 36560420 DOI: 10.3390/vaccines10122011] [Reference Citation Analysis]
|
40 |
Pattnaik A, Pany S, Sanket AS, Das S, Pati S, Samal SK. Delivery of Nucleic Acids, Such as siRNA and mRNA, Using Complex Formulations. Targeted Drug Delivery 2022. [DOI: 10.1002/9783527827855.ch9] [Reference Citation Analysis]
|
41 |
Stiepel RT, Pena ES, Ehrenzeller SA, Gallovic MD, Lifshits LM, Genito CJ, Bachelder EM, Ainslie KM. A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles. Journal of Controlled Release 2022;351:883-895. [DOI: 10.1016/j.jconrel.2022.09.067] [Reference Citation Analysis]
|
42 |
Niemi JVL, Sokolov AV, Schiöth HB. Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers (Basel) 2022;14:5163. [PMID: 36291947 DOI: 10.3390/cancers14205163] [Reference Citation Analysis]
|
43 |
Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022;13:1006304. [DOI: 10.3389/fphar.2022.1006304] [Reference Citation Analysis]
|
44 |
Tian Y, Deng Z, Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front Microbiol 2022;13:1008684. [DOI: 10.3389/fmicb.2022.1008684] [Reference Citation Analysis]
|
45 |
Zhang X, Hai L, Gao Y, Yu G, Sun Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.10.004] [Reference Citation Analysis]
|
46 |
Siddiqui SA, Bahmid NA, Taha A, Abdel-Moneim AE, Shehata AM, Tan C, Kharazmi MS, Li Y, Assadpour E, Castro-Muñoz R, Jafari SM. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv Colloid Interface Sci 2022;308:102772. [PMID: 36087561 DOI: 10.1016/j.cis.2022.102772] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
47 |
Nazeam JA, Singab ANB. Immunostimulant plant proteins: Potential candidates as vaccine adjuvants. Phytother Res 2022;36:4345-60. [PMID: 36128599 DOI: 10.1002/ptr.7624] [Reference Citation Analysis]
|
48 |
Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Reference Citation Analysis]
|
49 |
Imdad MJ, Khan MN, Alam HS, Khan AB, Mirani ZA, Khan A, Ahmed F. Design and in silico analysis of mRNA vaccine construct against Salmonella. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2119280] [Reference Citation Analysis]
|
50 |
Sahoo P, Dey J, Mahapatra SR, Ghosh A, Jaiswal A, Padhi S, Prabhuswamimath SC, Misra N, Suar M. Nanotechnology and COVID-19 Convergence: Toward New Planetary Health Interventions Against the Pandemic. OMICS: A Journal of Integrative Biology 2022;26:473-488. [DOI: 10.1089/omi.2022.0072] [Reference Citation Analysis]
|
51 |
Rahmani-kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. Molecular Therapy - Nucleic Acids 2022;29:705-717. [DOI: 10.1016/j.omtn.2022.08.012] [Reference Citation Analysis]
|
52 |
Shaabani E, Sharifiaghdam M, Faridi-majidi R, De Smedt SC, Braeckmans K, Fraire JC. Gene therapy to enhance angiogenesis in chronic wounds. Molecular Therapy - Nucleic Acids 2022;29:871-899. [DOI: 10.1016/j.omtn.2022.08.020] [Reference Citation Analysis]
|
53 |
Ohkubo Y, Ohmura S, Ishihara R, Miyamoto T. Transient Pneumonitis as a Possible Adverse Reaction to the BNT162b2 COVID-19 mRNA Vaccine in a Patient with Rheumatoid Arthritis: A Case Report and Review of the Literature. Case Reports in Rheumatology 2022;2022:1-5. [DOI: 10.1155/2022/3124887] [Reference Citation Analysis]
|
54 |
Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov Today 2022;:103341. [PMID: 35988718 DOI: 10.1016/j.drudis.2022.103341] [Reference Citation Analysis]
|
55 |
Shayestehfar M, Farahi S, Kheiri Yeganeh Azar B, Memari A, Baluchnejadmojarad T, Faghihi F. Generating Human Induced Pluripotent Stem Cell Via Low-Dose Polyethylenimine-Mediated Transfection: An Optimized Protocol. DNA Cell Biol 2022. [PMID: 35984994 DOI: 10.1089/dna.2022.0331] [Reference Citation Analysis]
|
56 |
Nitika, Wei J, Hui AM. The Delivery of mRNA Vaccines for Therapeutics. Life (Basel) 2022;12:1254. [PMID: 36013433 DOI: 10.3390/life12081254] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
57 |
Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Shinde K, Bendre S, Kale N, Gilda S. The mRNA Vaccine Heralds a New Era in Vaccinology. AJPT 2022. [DOI: 10.52711/2231-5713.2022.00042] [Reference Citation Analysis]
|
59 |
Higuchi A, Sung T, Wang T, Ling Q, Kumar SS, Hsu S, Umezawa A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews. [DOI: 10.1080/15583724.2022.2106490] [Reference Citation Analysis]
|
60 |
Marques R, Lacerda R, Romão L. Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022;10:1865. [DOI: 10.3390/biomedicines10081865] [Reference Citation Analysis]
|
61 |
Sung J, Alghoul Z, Long D, Yang C, Merlin D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
62 |
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science. [DOI: 10.1002/advs.202201740] [Reference Citation Analysis]
|
63 |
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.948705] [Reference Citation Analysis]
|
64 |
Foged C. Grand Challenges in Vaccine Delivery: Lessons Learned From the COVID-19 Vaccine Rollout. Front Drug Deliv 2022;2. [DOI: 10.3389/fddev.2022.964298] [Reference Citation Analysis]
|
65 |
Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm 2022;19:2175-82. [PMID: 35642083 DOI: 10.1021/acs.molpharmaceut.2c00033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
66 |
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva-Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023;8:e10343. [PMID: 36684081 DOI: 10.1002/btm2.10343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
67 |
Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022;40:3931-41. [PMID: 35660038 DOI: 10.1016/j.vaccine.2022.05.068] [Reference Citation Analysis]
|
68 |
Feng R, Chang ACY, Ni R, Li JCY, Chau Y. mRNA Delivery and Storage by Co-Assembling Nanostructures with Designer Oligopeptides. ACS Appl Bio Mater 2022. [PMID: 35729172 DOI: 10.1021/acsabm.2c00397] [Reference Citation Analysis]
|
69 |
Ayad C, Yavuz A, Salvi JP, Libeau P, Exposito JY, Ginet V, Monge C, Verrier B, Arruda DC. Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics 2022;14:1297. [PMID: 35745869 DOI: 10.3390/pharmaceutics14061297] [Reference Citation Analysis]
|
70 |
Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022;14:1271. [PMID: 35745843 DOI: 10.3390/pharmaceutics14061271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
71 |
Wu Y, Zhang H, Meng L, Li F, Yu C. Comparison of Immune Responses Elicited by SARS-CoV-2 mRNA and Recombinant Protein Vaccine Candidates. Front Immunol 2022;13:906457. [PMID: 35663946 DOI: 10.3389/fimmu.2022.906457] [Reference Citation Analysis]
|
72 |
Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials 2022;12:203-13. [DOI: 10.1016/j.bioactmat.2021.10.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
73 |
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022;107:102405. [PMID: 35576777 DOI: 10.1016/j.ctrv.2022.102405] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
74 |
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 32.0] [Reference Citation Analysis]
|
75 |
Sun M, Dang UJ, Yuan Y, Psaras AM, Osipitan O, Brooks TA, Lu F, Di Pasqua AJ. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. AAPS PharmSciTech 2022;23:135. [PMID: 35534697 DOI: 10.1208/s12249-022-02294-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
77 |
Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022;13:4753-61. [PMID: 35655897 DOI: 10.1039/d2sc00670g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
78 |
Yang J, Sun J, Zhu J, Du Y, Tan Y, Wei L, Zhao Y, Hou Q, Zhang Y, Sun Z, Zuo C. Circular mRNA encoded PROTAC (RiboPROTAC) as a new platform for the degradation of intracellular therapeutic targets.. [DOI: 10.1101/2022.04.22.489232] [Reference Citation Analysis]
|
79 |
Domazet-lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes 2022;13:719. [DOI: 10.3390/genes13050719] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
80 |
Li Z, Ke Y. DNA Nanostructures for Cancer Diagnosis and Therapy. DNA Origami 2022. [DOI: 10.1002/9781119682561.ch17] [Reference Citation Analysis]
|
81 |
Khoshnood S, Arshadi M, Akrami S, Koupaei M, Ghahramanpour H, Shariati A, Sadeghifard N, Heidary M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J Clin Lab Anal 2022;:e24418. [PMID: 35421266 DOI: 10.1002/jcla.24418] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
82 |
Mansoor I, Eassa HA, Mohammed KHA, Abd El-Fattah MA, Abdo MH, Rashad E, Eassa HA, Saleh A, Amin OM, Nounou MI, Ghoneim O. Microneedle-Based Vaccine Delivery: Review of an Emerging Technology. AAPS PharmSciTech 2022;23:103. [PMID: 35381906 DOI: 10.1208/s12249-022-02250-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
83 |
Dykstra PB, Kaplan M, Smolke CD. Engineering synthetic RNA devices for cell control. Nat Rev Genet 2022;23:215-28. [PMID: 34983970 DOI: 10.1038/s41576-021-00436-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
|
84 |
Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022;11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
85 |
Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2022;19:386-410. [PMID: 35354425 DOI: 10.1080/15476286.2022.2055923] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
86 |
Garduño-gonzález KA, Peña-benavides SA, Araújo RG, Castillo-zacarías C, Melchor-martínez EM, Oyervides-muñoz MA, Sosa-hernández JE, Purton S, Iqbal HM, Parra-saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. Journal of Drug Delivery Science and Technology 2022;70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
87 |
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022;183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
88 |
Karmacharya P, Patil BR, Kim JO. Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. J Pharm Investig . [DOI: 10.1007/s40005-022-00569-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
89 |
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
|
90 |
Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
91 |
Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022;27:1943. [DOI: 10.3390/molecules27061943] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
92 |
Al Jurdi A, Gassen RB, Borges TJ, Solhjou Z, Hullekes FE, Lape IT, Efe O, Alghamdi A, Patel P, Choi JY, Mohammed MT, Bohan B, Pattanayak V, Rosales I, Cravedi P, Kotton CN, Azzi JR, Riella LV. Non-Invasive Monitoring for Rejection in Kidney Transplant Recipients After SARS-CoV-2 mRNA Vaccination. Front Immunol 2022;13:838985. [PMID: 35281011 DOI: 10.3389/fimmu.2022.838985] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
93 |
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022;20. [DOI: 10.1186/s12967-022-03325-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
|
94 |
Wu J. Expression of Concern: Potential Risks and Unknown Effects of mRNA Vaccines on Population Health (6th Rev). Damages Are Being Materialized. IJCV 2022;4:7-43. [DOI: 10.14302/issn.2692-1537.ijcv-22-4117] [Reference Citation Analysis]
|
95 |
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022;11:6. [DOI: 10.3390/biotech11010006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
96 |
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022. [PMID: 35235159 DOI: 10.1007/s11033-022-07132-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
97 |
Aldossary AM, Ekweremadu CS, Offe IM, Alfassam HA, Han S, Onyali VC, Ozoude CH, Ayeni EA, Nwagwu CS, Halwani AA, Almozain NH, Tawfik EA. A Guide to Oral Vaccination: Highlighting Electrospraying as a Promising Manufacturing Technique toward a Successful Oral Vaccine Development. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.03.010] [Reference Citation Analysis]
|
98 |
Adesokan A, Obeid MA, Lawal AF. SARS-CoV-2: vaccinology and emerging therapeutics; challenges and future developments. Ther Deliv 2022. [PMID: 35195017 DOI: 10.4155/tde-2021-0075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
99 |
Wu J. FDA Should Re-evaluate All mRNA Vaccines and Revoke Their Use Authorizations (The Short Version). IJCV 2022;4:16-66. [DOI: 10.14302/issn.2692-1537.ijcv-21-4053] [Reference Citation Analysis]
|
100 |
Batur K, Yardimci H. mRNA Aşılarında Güncel Yaklaşımlar. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni 2022. [DOI: 10.38137/vftd.1021843] [Reference Citation Analysis]
|
101 |
Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022;83:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
102 |
Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
103 |
Zhang H, Bussmann J, Huhnke FH, Devoldere J, Minnaert AK, Jiskoot W, Serwane F, Spatz J, Röding M, De Smedt SC, Braeckmans K, Remaut K. Together is Better: mRNA Co-Encapsulation in Lipoplexes is Required to Obtain Ratiometric Co-Delivery and Protein Expression on the Single Cell Level. Adv Sci (Weinh) 2022;9:e2102072. [PMID: 34913603 DOI: 10.1002/advs.202102072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
104 |
Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. Nanoscale 2022;14:1054-74. [PMID: 35018939 DOI: 10.1039/d1nr03831a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
|
105 |
Kudsiova L, Lansley A, Scutt G, Allen M, Bowler L, Williams S, Lippett S, Stafford S, Tarzi M, Cross M, Okorie M. Stability testing of the Pfizer-BioNTech BNT162b2 COVID-19 vaccine: a translational study in UK vaccination centres. BMJ Open Sci 2021;5:e100203. [PMID: 35047705 DOI: 10.1136/bmjos-2021-100203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
106 |
Wu Y, Song H. A Comparative and Comprehensive Review of Antibody Applications in the Treatment of Lung Disease. Life 2022;12:130. [DOI: 10.3390/life12010130] [Reference Citation Analysis]
|
107 |
Goodsell DS, Burley SK. RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure 2022;30:55-68.e2. [PMID: 34739839 DOI: 10.1016/j.str.2021.10.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
108 |
Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
109 |
Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metabolism and Pharmacokinetics 2022. [DOI: 10.1016/j.dmpk.2022.100447] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
110 |
Gill K, Minall L, Rodriguez Nassif A. pDNA and mRNA vaccines. Practical Aspects of Vaccine Development 2022. [DOI: 10.1016/b978-0-12-814357-5.00007-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
111 |
Morán L, Woitok MM, Bartneck M, Cubero FJ. Hepatocyte-Directed Delivery of Lipid-Encapsulated Small Interfering RNA. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2557-6_6] [Reference Citation Analysis]
|
112 |
Rosales-mendoza S, Wong-arce A, de Lourdes Betancourt-mendiola M. RNA-based vaccines against SARS-CoV-2. Biomedical Innovations to Combat COVID-19 2022. [DOI: 10.1016/b978-0-323-90248-9.00014-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
113 |
Tsou H, Chang C, Maeda T, Lin C. Preparation of Messenger RNA-Loaded Nanomedicine Applied on Tissue Engineering and Regenerative Medicine. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_18] [Reference Citation Analysis]
|
114 |
Ongun M, Lokras AG, Foged C, Thakur A. Lipid Nanoparticle-Mediated Delivery of Therapeutic and Prophylactic mRNA: Immune Activation by Ionizable Cationic Lipids. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_11] [Reference Citation Analysis]
|
115 |
Kairuz D, Singh P, Smith T, Arbuthnot P, Ely A, Bloom K. Synthetic mRNA Gene Therapies and Hepatotropic Non-viral Vectors for the Treatment of Chronic HBV Infections. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_8] [Reference Citation Analysis]
|
116 |
Nagati V, Tenugu S, Pasupulati AK. Stability of therapeutic nano-drugs during storage and transportation as well as after ingestion in the human body. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00020-x] [Reference Citation Analysis]
|
117 |
Tabarzad M, Mohit E, Ghorbani-bidkorbeh F. Nanovaccines delivery approaches against infectious diseases. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00002-6] [Reference Citation Analysis]
|
118 |
Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022;145:112385. [PMID: 34915673 DOI: 10.1016/j.biopha.2021.112385] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
119 |
Miliotou AN, Pappas IS, Vizirianakis IS, Papadopoulou LC. In Vitro-Transcribed mRNAs as a New Generation of Therapeutics in the Dawn of Twenty-First Century: Exploitation of Peptides as Carriers for Their Intracellular Delivery. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_10] [Reference Citation Analysis]
|
120 |
Qureischi M, Mohr J, Arellano-viera E, Knudsen SE, Vohidov F, Garitano-trojaola A. mRNA-based therapies: Preclinical and clinical applications. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.007] [Reference Citation Analysis]
|
121 |
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1809. [PMID: 36416028 DOI: 10.1002/wnan.1809] [Reference Citation Analysis]
|
122 |
Bhatti A, Rehman A, John P. Challenges and opportunities in healthcare biotechnology. Biotechnology in Healthcare 2022. [DOI: 10.1016/b978-0-323-90042-3.00014-1] [Reference Citation Analysis]
|
123 |
Munson PV, Butterfield LH, Adamik J. Novel dendritic cell vaccine strategies. Cancer Vaccines as Immunotherapy of Cancer 2022. [DOI: 10.1016/b978-0-12-823901-8.00003-0] [Reference Citation Analysis]
|
124 |
Gómez-aguado I, Rodríguez-castejón J, Beraza-millor M, Rodríguez-gascón A, del Pozo-rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.010] [Reference Citation Analysis]
|
125 |
Wei J, Hui A. Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. Life (Basel) 2022;12:57. [PMID: 35054450 DOI: 10.3390/life12010057] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
126 |
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2022;10:50. [DOI: 10.3390/biomedicines10010050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
127 |
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
128 |
Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021;14:5271-85. [PMID: 34916811 DOI: 10.2147/IDR.S341694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
129 |
Qin M, Du G, Sun X. Recent Advances in the Noninvasive Delivery of mRNA. Acc Chem Res 2021;54:4262-71. [PMID: 34756014 DOI: 10.1021/acs.accounts.1c00493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
130 |
Wang C, Zhang Y, Dong Y. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Acc Chem Res 2021;54:4283-93. [PMID: 34793124 DOI: 10.1021/acs.accounts.1c00550] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
131 |
Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021;13:2090. [PMID: 34959371 DOI: 10.3390/pharmaceutics13122090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
132 |
Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
133 |
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;179:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
|
134 |
Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021;179:114002. [PMID: 34653534 DOI: 10.1016/j.addr.2021.114002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
135 |
Walsh APG, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021;179:113998. [PMID: 34662671 DOI: 10.1016/j.addr.2021.113998] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
136 |
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021;9:1387. [PMID: 34960133 DOI: 10.3390/vaccines9121387] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
137 |
Morais P, Adachi H, Yu YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front Cell Dev Biol 2021;9:789427. [PMID: 34805188 DOI: 10.3389/fcell.2021.789427] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
|
138 |
Meldgaard TS, Blengio F, Maffione D, Sammicheli C, Tavarini S, Nuti S, Kratzer R, Medini D, Siena E, Bertholet S. Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines. Front Immunol 2021;12:757151. [PMID: 34777370 DOI: 10.3389/fimmu.2021.757151] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
139 |
Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021;339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
140 |
Balmayor ER. Synthetic mRNA - emerging new class of drug for tissue regeneration. Curr Opin Biotechnol 2021;74:8-14. [PMID: 34749063 DOI: 10.1016/j.copbio.2021.10.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
141 |
Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic Acid Vaccines for COVID-19: A Paradigm Shift in the Vaccine Development Arena. Biologics 2021;1:337-56. [DOI: 10.3390/biologics1030020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 8.5] [Reference Citation Analysis]
|
142 |
Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines (Basel) 2021;9:1211. [PMID: 34835142 DOI: 10.3390/vaccines9111211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
143 |
Feliciello I, Procino A. mRNA vaccines: Why and how they should be modified. J Biol Res 2021;94. [DOI: 10.4081/jbr.2021.10072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
144 |
Ivanova E. Yeasts in nanotechnology-enabled oral vaccine and gene delivery. Bioengineered 2021;12:8325-35. [PMID: 34592900 DOI: 10.1080/21655979.2021.1985816] [Reference Citation Analysis]
|
145 |
Itaka K. mRNA Therapeutics and mRNA Vaccines. tits 2021;26:10_38-10_43. [DOI: 10.5363/tits.26.10_38] [Reference Citation Analysis]
|
146 |
Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev 2021;177:113930. [PMID: 34403751 DOI: 10.1016/j.addr.2021.113930] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
147 |
Ing SH, Abdullah AA, Kanaya S. Development of COVID-19 mRNA Vaccine Degradation Prediction System. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) 2021. [DOI: 10.1109/3ict53449.2021.9582052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
148 |
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021;10:2512. [PMID: 34685492 DOI: 10.3390/cells10102512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
149 |
Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA Jr, Ganjalikhani-Hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021;9:1060. [PMID: 34696168 DOI: 10.3390/vaccines9101060] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
|
150 |
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021;7:35. [PMID: 34556658 DOI: 10.1038/s41526-021-00162-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|
151 |
Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 2021;9:1033. [PMID: 34579270 DOI: 10.3390/vaccines9091033] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 21.0] [Reference Citation Analysis]
|
152 |
Andresen JL, Fenton OS. Nucleic acid delivery and nanoparticle design for COVID vaccines. MRS Bull 2021;:1-8. [PMID: 34539057 DOI: 10.1557/s43577-021-00169-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
153 |
Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021;131:16-40. [PMID: 34153512 DOI: 10.1016/j.actbio.2021.06.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 31] [Article Influence: 23.5] [Reference Citation Analysis]
|
154 |
Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
|
155 |
Mollocana-Lara EC, Ni M, Agathos SN, Gonzales-Zubiate FA. The infinite possibilities of RNA therapeutics. J Ind Microbiol Biotechnol 2021:kuab063. [PMID: 34463324 DOI: 10.1093/jimb/kuab063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
156 |
Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021;100:108086. [PMID: 34454291 DOI: 10.1016/j.intimp.2021.108086] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
157 |
Gao Y, Yang K, Shelling AN, Wu Z. Nanotechnology-Enabled COVID-19 mRNA Vaccines. Encyclopedia 2021;1:773-80. [DOI: 10.3390/encyclopedia1030059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
158 |
Rijkers GT, Weterings N, Obregon-Henao A, Lepolder M, Dutt TS, van Overveld FJ, Henao-Tamayo M. Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021;9:848. [PMID: 34451973 DOI: 10.3390/vaccines9080848] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
|
159 |
Ing SH, Abdullah AA, Harun NH, Kanaya S. COVID-19 mRNA Vaccine Degradation Prediction Using LR and LGBM Algorithms. J Phys : Conf Ser 2021;1997:012005. [DOI: 10.1088/1742-6596/1997/1/012005] [Reference Citation Analysis]
|
160 |
Wang AYL. Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate. Int J Mol Sci 2021;22:8148. [PMID: 34360910 DOI: 10.3390/ijms22158148] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
161 |
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021;:1-11. [PMID: 34058918 DOI: 10.1080/17460441.2021.1935859] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
162 |
Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, Eri RD, Dua K, Tambuwala MM, Shastri MD. An Appraisal of the Current Scenario in Vaccine Research for COVID-19. Viruses 2021;13:1397. [PMID: 34372603 DOI: 10.3390/v13071397] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
163 |
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021;12:679344. [PMID: 34305909 DOI: 10.3389/fimmu.2021.679344] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
|
164 |
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021. [PMID: 34170014 DOI: 10.1002/jcp.30483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
165 |
Cappellano G, Abreu H, Casale C, Dianzani U, Chiocchetti A. Nano-Microparticle Platforms in Developing Next-Generation Vaccines. Vaccines (Basel) 2021;9:606. [PMID: 34198865 DOI: 10.3390/vaccines9060606] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
166 |
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021;9:633776. [PMID: 34113610 DOI: 10.3389/fcell.2021.633776] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
|
167 |
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021;118:2845-69. [PMID: 33913510 DOI: 10.1002/bit.27803] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
168 |
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021;9:520. [PMID: 34066608 DOI: 10.3390/biomedicines9050520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
169 |
Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021;9:452. [PMID: 34063689 DOI: 10.3390/vaccines9050452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
170 |
van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney AK, Kontoravdi C, Shattock R, Shah N. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 2021;6:65. [PMID: 33927197 DOI: 10.1038/s41541-021-00322-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|
171 |
Sebastiani F, Yanez Arteta M, Lerche M, Porcar L, Lang C, Bragg RA, Elmore CS, Krishnamurthy VR, Russell RA, Darwish T, Pichler H, Waldie S, Moulin M, Haertlein M, Forsyth VT, Lindfors L, Cárdenas M. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano 2021;15:6709-22. [PMID: 33754708 DOI: 10.1021/acsnano.0c10064] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 24.5] [Reference Citation Analysis]
|
172 |
Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
|
173 |
Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci 2021;17:1446-60. [PMID: 33907508 DOI: 10.7150/ijbs.59233] [Cited by in Crossref: 65] [Cited by in F6Publishing: 74] [Article Influence: 32.5] [Reference Citation Analysis]
|
174 |
Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021;38:101142. [PMID: 33815564 DOI: 10.1016/j.nantod.2021.101142] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 47.5] [Reference Citation Analysis]
|
175 |
Sagili Anthony DP, Sivakumar K, Venugopal P, Sriram DK, George M. Can mRNA Vaccines Turn the Tables During the COVID-19 Pandemic? Current Status and Challenges. Clin Drug Investig 2021;41:499-509. [PMID: 33754328 DOI: 10.1007/s40261-021-01022-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
176 |
Mildner R, Hak S, Parot J, Hyldbakk A, Borgos SE, Some D, Johann C, Caputo F. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021;163:252-65. [PMID: 33745980 DOI: 10.1016/j.ejpb.2021.03.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
177 |
Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021;13. [PMID: 33803790 DOI: 10.3390/v13030501] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
178 |
Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021;9:244. [PMID: 33799516 DOI: 10.3390/vaccines9030244] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
179 |
Griffiths PD. Vaccines for SARS coronavirus 2 and the new normal in vaccinology. Rev Med Virol 2021;31:e2229. [PMID: 33666285 DOI: 10.1002/rmv.2229] [Reference Citation Analysis]
|
180 |
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021;170:113-41. [PMID: 33422546 DOI: 10.1016/j.addr.2021.01.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 22.5] [Reference Citation Analysis]
|
181 |
Brown RB. Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials. Medicina (Kaunas) 2021;57:199. [PMID: 33652582 DOI: 10.3390/medicina57030199] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
|
182 |
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021;13:206. [PMID: 33540942 DOI: 10.3390/pharmaceutics13020206] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 28.5] [Reference Citation Analysis]
|
183 |
Liu CH, Huang HY, Tu YF, Lai WY, Wang CL, Sun JR, Chien Y, Lin TW, Lin YY, Chien CS, Huang CH, Chen YM, Huang PI, Wang FD, Yang YP. Highlight of severe acute respiratory syndrome coronavirus-2 vaccine development against COVID-19 pandemic. J Chin Med Assoc 2021;84:9-13. [PMID: 33186212 DOI: 10.1097/JCMA.0000000000000461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
184 |
Karpenko LI, Rudometov AP, Sharabrin SV, Shcherbakov DN, Borgoyakova MB, Bazhan SI, Volosnikova EA, Rudometova NB, Orlova LA, Pyshnaya IA, Zaitsev BN, Volkova NV, Azaev MS, Zaykovskaya AV, Pyankov OV, Ilyichev AA. Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines (Basel) 2021;9:76. [PMID: 33494530 DOI: 10.3390/vaccines9020076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
185 |
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021;9:65. [PMID: 33478109 DOI: 10.3390/vaccines9010065] [Cited by in Crossref: 155] [Cited by in F6Publishing: 168] [Article Influence: 77.5] [Reference Citation Analysis]
|
186 |
Legere RM, Cohen ND, Poveda C, Bray JM, Barhoumi R, Szule JA, de la Concha-Bermejillo A, Bordin AI, Pollet J. Safe and effective aerosolization of in vitro transcribed mRNA to the respiratory tract epithelium of horses without a transfection agent. Sci Rep 2021;11:371. [PMID: 33432084 DOI: 10.1038/s41598-020-79855-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
187 |
Oladipo EK, Ajayi AF, Onile OS, Ariyo OE, Jimah EM, Ezediuno LO, Adebayo OI, Adebayo ET, Odeyemi AN, Oyeleke MO, Oyewole MP, Oguntomi AS, Akindiya OE, Aremu VO, Aboderin DO, Oloke JK. Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol 2021;9:8. [PMID: 33425647 DOI: 10.1007/s40203-020-00062-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
188 |
Alfagih IM, Aldosari B, AlQuadeib B, Almurshedi A, Alfagih MM. Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020;13:45. [PMID: 33396817 DOI: 10.3390/pharmaceutics13010045] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
|
189 |
Kim D, Le QV, Wu Y, Park J, Oh YK. Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020;12:E1233. [PMID: 33353099 DOI: 10.3390/pharmaceutics12121233] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
190 |
Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2021;39:197-201. [PMID: 33279318 DOI: 10.1016/j.vaccine.2020.11.054] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 15.0] [Reference Citation Analysis]
|
191 |
D'haese S, Lacroix C, Garcia F, Plana M, Ruta S, Vanham G, Verrier B, Aerts JL. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J Control Release 2021;330:1016-33. [PMID: 33181204 DOI: 10.1016/j.jconrel.2020.11.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
192 |
Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020;12:E1068. [PMID: 33182382 DOI: 10.3390/pharmaceutics12111068] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
|
193 |
Moradian H, Lendlein A, Gossen M. Strategies for simultaneous and successive delivery of RNA. J Mol Med (Berl) 2020;98:1767-79. [PMID: 33146744 DOI: 10.1007/s00109-020-01956-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
194 |
Guevara ML, Persano F, Persano S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front Chem 2020;8:589959. [PMID: 33195094 DOI: 10.3389/fchem.2020.589959] [Cited by in Crossref: 75] [Cited by in F6Publishing: 84] [Article Influence: 25.0] [Reference Citation Analysis]
|
195 |
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020;21:E7362. [PMID: 33028045 DOI: 10.3390/ijms21197362] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
196 |
Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020;21:E6582. [PMID: 32916818 DOI: 10.3390/ijms21186582] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 27.3] [Reference Citation Analysis]
|
197 |
Uchida S, Perche F, Pichon C, Cabral H. Nanomedicine-Based Approaches for mRNA Delivery. Mol Pharm 2020;17:3654-84. [PMID: 32845639 DOI: 10.1021/acs.molpharmaceut.0c00618] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 12.7] [Reference Citation Analysis]
|
198 |
Ye T, Zhong Z, García‐sastre A, Schotsaert M, De Geest BG. Current Status of COVID‐19 (Pre)Clinical Vaccine Development. Angew Chem 2020;132:19045-57. [DOI: 10.1002/ange.202008319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
199 |
Ye T, Zhong Z, García-Sastre A, Schotsaert M, De Geest BG. Current Status of COVID-19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020;59:18885-97. [PMID: 32663348 DOI: 10.1002/anie.202008319] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
|
200 |
Huang L, Rong Y, Pan Q, Yi K, Tang X, Zhang Q, Wang W, Wu J, Wang F. SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2021;16:136-46. [PMID: 32905011 DOI: 10.1016/j.ajps.2020.08.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
|
201 |
Meng C, Chen Z, Li G, Welte T, Shen H. Nanoplatforms for mRNA Therapeutics. Adv Therap 2021;4:2000099. [DOI: 10.1002/adtp.202000099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
202 |
Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020;154-155:37-63. [PMID: 32526452 DOI: 10.1016/j.addr.2020.06.002] [Cited by in Crossref: 118] [Cited by in F6Publishing: 132] [Article Influence: 39.3] [Reference Citation Analysis]
|