1 |
More S, Pawar A. Brain Targeted Curcumin Loaded Turmeric Oil Microemulsion Protects Against Trimethyltin Induced Neurodegeneration in Adult Zebrafish: A Pharmacokinetic and Pharmacodynamic Insight. Pharm Res 2023;40:675-87. [PMID: 36703027 DOI: 10.1007/s11095-022-03467-9] [Reference Citation Analysis]
|
2 |
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Reference Citation Analysis]
|
3 |
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, Elshatory A, Gad El Hak HN. Neuroprotective effect of piracetam-loaded magnetic chitosan nanoparticles against thiacloprid-induced neurotoxicity in albino rats. Inflammopharmacology 2023. [PMID: 36745244 DOI: 10.1007/s10787-023-01151-x] [Reference Citation Analysis]
|
4 |
Kudaibergen D, Park HS, Park J, Im GB, Lee JR, Joung YK, Bhang SH, Kim JH. Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Eng Regen Med 2023. [PMID: 36689072 DOI: 10.1007/s13770-022-00510-z] [Reference Citation Analysis]
|
5 |
Taha E, Nour SA, Mamdouh W, Selim AA, Swidan MM, Ibrahim AB, Naguib MJ. Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, in vitro optimization, ex vivo cytotoxicity & in vivo biodistribution utilizing radioiodinated zopiclone. Int J Pharm X 2023;5:100160. [PMID: 36647457 DOI: 10.1016/j.ijpx.2023.100160] [Reference Citation Analysis]
|
6 |
Yadav D, Nara S. Nanozymes for Neurodegenerative Diseases. Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022) 2023. [DOI: 10.2991/978-94-6463-020-6_9] [Reference Citation Analysis]
|
7 |
Mittal P, Hazari PP. Nanotubes-based brain targeted drug delivery system: a step toward improving bioavailability and drug enhancement at the target site. Fiber and Textile Engineering in Drug Delivery Systems 2023. [DOI: 10.1016/b978-0-323-96117-2.00009-1] [Reference Citation Analysis]
|
8 |
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. Biosensors (Basel) 2022;12. [PMID: 36551143 DOI: 10.3390/bios12121176] [Reference Citation Analysis]
|
9 |
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022;14. [PMID: 36559214 DOI: 10.3390/pharmaceutics14122719] [Reference Citation Analysis]
|
10 |
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022;14. [PMID: 36559206 DOI: 10.3390/pharmaceutics14122712] [Reference Citation Analysis]
|
11 |
Stanisz M, Klapiszewski Ł, Collins M, Jesionowski T. Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: a comprehensive review. Materials Today Chemistry 2022;26:101198. [DOI: 10.1016/j.mtchem.2022.101198] [Reference Citation Analysis]
|
12 |
Li L, He R, Yan H, Leng Z, Zhu S, Gu Z. Nanotechnology for the diagnosis and treatment of Alzheimer's disease: A bibliometric analysis. Nano Today 2022;47:101654. [DOI: 10.1016/j.nantod.2022.101654] [Reference Citation Analysis]
|
13 |
Vargas-Nadal G, Köber M, Nsamela A, Terenziani F, Sissa C, Pescina S, Sonvico F, Gazzali AM, Wahab HA, Grisanti L, Olivera ME, Palena MC, Guzman ML, Luciani-Giacobbe LC, Jimenez-Kairuz A, Ventosa N, Ratera I, Belfield KD, Maoz BM. Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022;14. [PMID: 36432688 DOI: 10.3390/pharmaceutics14112498] [Reference Citation Analysis]
|
14 |
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1025160] [Reference Citation Analysis]
|
15 |
Bahadur S, Jha MK. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103932] [Reference Citation Analysis]
|
16 |
Arnold AM, Bradley AM, Taylor KL, Kennedy ZC, Omberg KM. The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security. Health Secur 2022;20:408-23. [PMID: 36286588 DOI: 10.1089/hs.2022.0014] [Reference Citation Analysis]
|
17 |
Elzayat NA, Abbas H, Helmy MW, Habib DA. Phyto-Therapeutic and Nanomedicinal Approaches: A New Hope for Management of Alzheimer's Disease. Int J Pharm 2022;:122213. [PMID: 36179926 DOI: 10.1016/j.ijpharm.2022.122213] [Reference Citation Analysis]
|
18 |
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01626-z] [Reference Citation Analysis]
|
19 |
Figueroa EG, Caballero-Román A, Ticó JR, Miñarro M, Nardi-Ricart A, González-Candia A. miRNA nanoencapsulation to regulate the programming of the blood-brain barrier permeability by hypoxia. Curr Res Pharmacol Drug Discov 2022;3:100129. [PMID: 36568262 DOI: 10.1016/j.crphar.2022.100129] [Reference Citation Analysis]
|
20 |
Banga AR, Odiase P, Rachakonda K, Garg AP, Adunyah SE, Rachakonda G. Application of C-Terminal Clostridium Perfringens Enterotoxin in Treatment of Brain Metastasis from Breast Cancer. Cancers (Basel) 2022;14:4309. [PMID: 36077843 DOI: 10.3390/cancers14174309] [Reference Citation Analysis]
|
21 |
Chaturvedi S, Naseem Z, El-Khamisy SF, Wahajuddin M. Nanomedicines targeting the Inflammasome as a promising therapeutic approach for cell senescence. Semin Cancer Biol 2022:S1044-579X(22)00194-8. [PMID: 36030027 DOI: 10.1016/j.semcancer.2022.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Soi-ampornkul R, Myint EEP, Thangnipon W, Tantarungsee N, Mitrpant C, Tuchinda P, Nobsathian S, Vatanashevanopakorn C. N -trans-feruloyltyramine Protects Human Neuroblastoma SK-N-SH Cell Line Against H 2 O 2 -Induced Cytotoxicity. Natural Product Communications 2022;17:1934578X2211173. [DOI: 10.1177/1934578x221117312] [Reference Citation Analysis]
|
23 |
Rizki Syaban MF, Muhammad RF, Adnani B, Ami Putra GF, Erina Erwan N, Dita Arviana S, Krisnayana AD, Kurniawan DB. Molecular Docking Studies of Interaction Curcumin against Beta-secretase 1, Amyloid A4 Protein, Gamma-secretase and Glycogen Synthase Kinase-3β as Target Therapy for Alzheimer Disease. RJPT 2022. [DOI: 10.52711/0974-360x.2022.00513] [Reference Citation Analysis]
|
24 |
Taleuzzaman M, Chauhan S, Tomar DS, Singh PK, Talwar I, Javed MN. Lipid Nanoformulation of Nutraceuticals as Neurotherapeuticals in Neurological Disorders. Nanotechnology in Functional Foods 2022. [DOI: 10.1002/9781119905059.ch7] [Reference Citation Analysis]
|
25 |
Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Emran TB, Cavalu S. Nanomedicines in the Management of Alzheimer’s Disease: Current View and Future Prospects. Front Aging Neurosci 2022;14:879114. [DOI: 10.3389/fnagi.2022.879114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022;10. [PMID: 35884903 DOI: 10.3390/biomedicines10071598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
27 |
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
28 |
Pandya T, Bhatt P, Misra A. Development and Evaluation of Exenatide Loaded PLGA Nanoparticles for Intranasal Delivery in the Treatment of Obesity. DDL 2022;12:149-162. [DOI: 10.2174/2210303112666220318155445] [Reference Citation Analysis]
|
29 |
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. Journal of the Neurological Sciences 2022. [DOI: 10.1016/j.jns.2022.120316] [Reference Citation Analysis]
|
30 |
Zha S, Wong KL, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022;11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
31 |
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer’s Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022;14:835. [DOI: 10.3390/pharmaceutics14040835] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
|
32 |
Pandey M. Nose-to-Brain Targeted Drug Delivery Bypassing the Blood-Brain Barrier. Advancements in Controlled Drug Delivery Systems 2022. [DOI: 10.4018/978-1-7998-8908-3.ch007] [Reference Citation Analysis]
|
33 |
Sharma P, Jain V, Tailang M. Selection and Role of Polymers for Designing of a Drug Carrier. Drug Carriers [Working Title] 2022. [DOI: 10.5772/intechopen.103125] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
34 |
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022;237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
35 |
Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. IJMS 2022;23:2856. [DOI: 10.3390/ijms23052856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
36 |
Kong D, Hong W, Yu M, Li Y, Zheng Y, Ying X. Multifunctional Targeting Liposomes of Epirubicin Plus Resveratrol Improved Therapeutic Effect on Brain Gliomas. IJN 2022;Volume 17:1087-110. [DOI: 10.2147/ijn.s346948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev 2022;181:114083. [PMID: 34929251 DOI: 10.1016/j.addr.2021.114083] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
|
38 |
Jain H, Prabhakar B, Shende P. Modulation of olfactory area for effective transportation of actives in CNS disorders. Journal of Drug Delivery Science and Technology 2022;68:103091. [DOI: 10.1016/j.jddst.2021.103091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Karthika C, Appu AP, Akter R, Rahman MH, Tagde P, Ashraf GM, Abdel-Daim MM, Hassan SSU, Abid A, Bungau S. Potential innovation against Alzheimer's disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. Environ Sci Pollut Res Int 2022;29:10950-65. [PMID: 35000160 DOI: 10.1007/s11356-021-17830-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
|
40 |
Jagtiani E, Yeolekar M, Naik S, Patravale V. In vitro blood brain barrier models: An overview. J Control Release 2022:S0168-3659(22)00025-6. [PMID: 35026351 DOI: 10.1016/j.jconrel.2022.01.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
41 |
Haque S, Patra CR. Metal nanoparticles for neurodegenerative diseases. Nanomedical Drug Delivery for Neurodegenerative Diseases 2022. [DOI: 10.1016/b978-0-323-85544-0.00012-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
42 |
Adekiya TA, Kondiah PP, Kumar P, Choonara YE. Nanomedicines for tropical diseases affecting the central nervous system. Nanocarriers for Drug-Targeting Brain Tumors 2022. [DOI: 10.1016/b978-0-323-90773-6.00019-1] [Reference Citation Analysis]
|
43 |
Ivlieva A, Zinicovscaia I, Petritskaya E, Yushin N, Rogatkin D, Peshkova A. Assessment of Gold Nanoparticles Uptake in Tissues of Female Mice and Their Offspring Using Neutron Activation Analysis. IFMBE Proceedings 2022. [DOI: 10.1007/978-3-030-92328-0_51] [Reference Citation Analysis]
|
44 |
Zhao J, Xu N, Yang X, Ling G, Zhang P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer's disease. Colloid and Interface Science Communications 2022;46:100579. [DOI: 10.1016/j.colcom.2021.100579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
45 |
Ovejero JG, Wang E, Veintemillas-verdaguer S, Morales MDP, Sorolla A. Nanoparticles for Neural Applications. Engineering Biomaterials for Neural Applications 2022. [DOI: 10.1007/978-3-030-81400-7_7] [Reference Citation Analysis]
|
46 |
Singh M, Jindal D, Agarwal V, Pathak D, Sharma M, Pancham P, Mani S, Rachana. New phase therapeutic pursuits for targeted drug delivery in glioblastoma multiforme. Explor Target Antitumor Ther 2022;3:866-88. [PMID: 36654821 DOI: 10.37349/etat.2022.00118] [Reference Citation Analysis]
|
47 |
Kapoor A, Rajput JK. Advanced nanosensors for virus detection. Nanosensors for Smart Agriculture 2022. [DOI: 10.1016/b978-0-12-824554-5.00024-0] [Reference Citation Analysis]
|
48 |
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NeuroSci 2022;3:1-27. [DOI: 10.3390/neurosci3010001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
49 |
Tabish TA, Narayan RJ. Crossing the blood–brain barrier with graphene nanostructures. Materials Today 2021;51:393-401. [DOI: 10.1016/j.mattod.2021.08.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
|
50 |
Suluvoy JK, Gomez PLA, Joel TJ, Toppo N, Karthikeyan DP, Shepherd R. Nanoparticles as Antimicrobial Agents and Drug Delivery Systems - A Review. J Pure Appl Microbiol 2021;15:1809-1815. [DOI: 10.22207/jpam.15.4.67] [Reference Citation Analysis]
|
51 |
Mozafari N, Ashrafi H, Azadi A. Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. Journal of Drug Delivery Science and Technology 2021;66:102802. [DOI: 10.1016/j.jddst.2021.102802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
52 |
Jiang P, Gan M, Yen SH, Dickson DW. Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Front Mol Neurosci 2021;14:738535. [PMID: 34744624 DOI: 10.3389/fnmol.2021.738535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
53 |
Singh A, Mallika TN, Gorain B, Yadav AK, Tiwari S, Flora S, Shukla R, Kesharwani P. Quantum dot: Heralding a brighter future in neurodegenerative disorders. Journal of Drug Delivery Science and Technology 2021;65:102700. [DOI: 10.1016/j.jddst.2021.102700] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
54 |
Mhambi S, Fisher D, Tchokonte MBT, Dube A. Permeation Challenges of Drugs for Treatment of Neurological Tuberculosis and HIV and the Application of Magneto-Electric Nanoparticle Drug Delivery Systems. Pharmaceutics 2021;13:1479. [PMID: 34575555 DOI: 10.3390/pharmaceutics13091479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
55 |
Soo AKS, Ferrini A, Kurian MA. Precision medicine for genetic childhood movement disorders. Dev Med Child Neurol 2021;63:925-33. [PMID: 33763868 DOI: 10.1111/dmcn.14869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Trindade LR, da Silva DVT, Baião DDS, Paschoalin VMF. Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021;26:4621. [PMID: 34361774 DOI: 10.3390/molecules26154621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
57 |
Crapanzano R, Secchi V, Villa I. Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences 2021;11:7073. [DOI: 10.3390/app11157073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
58 |
Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Saleem A, Altyar AE, Kaushik D, Abdel-Daim MM. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother 2021;141:111928. [PMID: 34323701 DOI: 10.1016/j.biopha.2021.111928] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
|
59 |
Yasaswi PS, Shetty K, Yadav KS. Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021;336:549-71. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
|
60 |
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021;174:348-68. [PMID: 33964356 DOI: 10.1016/j.addr.2021.04.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
|
61 |
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. Mutation Research/Reviews in Mutation Research 2021;788:108385. [DOI: 10.1016/j.mrrev.2021.108385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
62 |
Angelopoulou E, Paudel YN, Bougea A, Piperi C. Impact of the apelin/APJ axis in the pathogenesis of Parkinson's disease with therapeutic potential. J Neurosci Res 2021;99:2117-33. [PMID: 34115895 DOI: 10.1002/jnr.24895] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
63 |
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin: A Promising Therapy for Parkinson's Disease. Int J Mol Sci 2021;22:6223. [PMID: 34207581 DOI: 10.3390/ijms22126223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
64 |
Zhang S, Asghar S, Zhu C, Ye J, Lin L, Xu L, Hu Z, Chen Z, Shao F, Xiao Y. Multifunctional nanorods based on self-assembly of biomimetic apolipoprotein E peptide for the treatment of Alzheimer's disease. J Control Release 2021;335:637-49. [PMID: 34087249 DOI: 10.1016/j.jconrel.2021.05.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
65 |
Stawicki B, Schacher T, Cho H. Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021;7:63. [PMID: 34073626 DOI: 10.3390/gels7020063] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
66 |
Del Amo L, Cano A, Ettcheto M, Souto EB, Espina M, Camins A, García ML, Sánchez-lópez E. Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. Applied Sciences 2021;11:4305. [DOI: 10.3390/app11094305] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
67 |
Wala K, Szlasa W, Saczko J, Rudno-Rudzińska J, Kulbacka J. Modulation of Blood-Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomolecules 2021;11:633. [PMID: 33923147 DOI: 10.3390/biom11050633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
68 |
D'Souza A, Dave KM, Stetler RA, S Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021;171:332-51. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
|
69 |
Song G, Zhao M, Chen H, Lenahan C, Zhou X, Ou Y, He Y. The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. Oxid Med Cell Longev 2021;2021:8857486. [PMID: 33815664 DOI: 10.1155/2021/8857486] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
70 |
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021;6:2854-69. [PMID: 33718667 DOI: 10.1016/j.bioactmat.2021.01.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
|
71 |
Kunjumon R, Viswanathan G, Jayasree DV, Biju PG, Prakash P, Sasidharan BCP, Baby S. Madecassoside encapsulated in alginate chitosan nanoparticles exerts anti-excitotoxicity effects in pilocarpine-induced seizure. Phytomedicine Plus 2021;1:100004. [DOI: 10.1016/j.phyplu.2020.100004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
72 |
Tapia-arellano A, Gallardo-toledo E, Ortiz C, Henríquez J, Feijóo CG, Araya E, Sierpe R, Kogan MJ. Functionalization with PEG/Angiopep-2 peptide to improve the delivery of gold nanoprisms to central nervous system: in vitro and in vivo studies. Materials Science and Engineering: C 2021;121:111785. [DOI: 10.1016/j.msec.2020.111785] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
73 |
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology 2021;61:102098. [DOI: 10.1016/j.jddst.2020.102098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
74 |
Bell M, Rooks CP, Agrahari V. Drug Delivery Approaches and Imaging Techniques for Brain Tumor. Neuromethods 2021. [DOI: 10.1007/978-1-0716-1052-7_4] [Reference Citation Analysis]
|
75 |
Dhas N, Mehta T, Sharma S, Garkal A, Yadav D, Hariharan K, Shamjetshabam B, Khot S, Kudarha R, Bangar P, Arbade G, Kalyankar P. Intranasal gene therapy for the treatment of neurological disorders. Direct Nose-to-Brain Drug Delivery 2021. [DOI: 10.1016/b978-0-12-822522-6.00017-5] [Reference Citation Analysis]
|
76 |
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale 2021;13:2266-85. [DOI: 10.1039/d0nr08478f] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
|
77 |
Ganipineni LP, Chan Y, Ng SW, Kandalam S, Chereddy KK. Cell and gene therapies—Emerging technologies and drug delivery systems for treating brain cancer. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00017-1] [Reference Citation Analysis]
|
78 |
Kumar A, Tyagi YK. Sustained release of hydrophobic dye [pyrene] from self-aggregated nonionic amphiphilic micelles: Effect of pH and temperature. Materials Today: Proceedings 2021;43:250-255. [DOI: 10.1016/j.matpr.2020.11.655] [Reference Citation Analysis]
|
79 |
Shabbir U, Rubab M, Tyagi A, Oh DH. Curcumin and Its Derivatives as Theranostic Agents in Alzheimer's Disease: The Implication of Nanotechnology. Int J Mol Sci 2020;22:E196. [PMID: 33375513 DOI: 10.3390/ijms22010196] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
80 |
Tavanti F, Pedone A, Menziani MC. Disclosing the Interaction of Gold Nanoparticles with Aβ(1-40) Monomers through Replica Exchange Molecular Dynamics Simulations. Int J Mol Sci 2020;22:E26. [PMID: 33375086 DOI: 10.3390/ijms22010026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
81 |
Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020;12:E3055. [PMID: 33419339 DOI: 10.3390/polym12123055] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
82 |
Zwain T, Alder JE, Sabagh B, Shaw A, Burrow AJ, Singh KK. Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. Mater Sci Eng C Mater Biol Appl 2021;121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
83 |
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020;167:89-108. [PMID: 32535139 DOI: 10.1016/j.addr.2020.06.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
|
84 |
Sinha N, Joshi AS, Thakur AK. Analytical validation of an ATR-FTIR based method for quantifying the amount of polysorbate 80 adsorbed on PLGA nanoparticles. Anal Methods 2020;12:5360-6. [PMID: 33107870 DOI: 10.1039/d0ay01685c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
85 |
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2021;330:1152-67. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
|
86 |
Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Curr Pharm Des 2020;26:1128-37. [PMID: 31951165 DOI: 10.2174/1381612826666200116153912] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
|
87 |
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020;25:E5294. [PMID: 33202839 DOI: 10.3390/molecules25225294] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
|
88 |
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2021;269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
89 |
Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier. Cardiovasc Eng Technol 2020;11:607-20. [PMID: 33113565 DOI: 10.1007/s13239-020-00496-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
|
90 |
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2021;16:235-54. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
|
91 |
Sokolova V, Mekky G, van der Meer SB, Seeds MC, Atala AJ, Epple M. Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020;10:18033. [PMID: 33093563 DOI: 10.1038/s41598-020-75125-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
92 |
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020;10:E1401. [PMID: 33019651 DOI: 10.3390/biom10101401] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
|
93 |
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox‐Responsive Nanobiomaterials‐Based Therapeutics for Neurodegenerative Diseases. Small 2020;16:1907308. [DOI: 10.1002/smll.201907308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
94 |
Kanchanapally R, Khan MA, Deshmukh SK, Srivastava SK, Khushman M, Singh S, Singh AP. Exosomal Formulation Escalates Cellular Uptake of Honokiol Leading to the Enhancement of Its Antitumor Efficacy. ACS Omega 2020;5:23299-307. [PMID: 32954181 DOI: 10.1021/acsomega.0c03136] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
95 |
Rahdar A, Hajinezhad MR, Bilal M, Askari F, Kyzas GZ. Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorganic Chemistry Communications 2020;119:108131. [DOI: 10.1016/j.inoche.2020.108131] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
96 |
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci 2020;21:E6070. [PMID: 32842530 DOI: 10.3390/ijms21176070] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
|
97 |
Duskey JT, Ottonelli I, Da Ros F, Vilella A, Zoli M, Kovachka S, Spyrakis F, Vandelli MA, Tosi G, Ruozi B. Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. Nanomedicine: Nanotechnology, Biology and Medicine 2020;28:102226. [DOI: 10.1016/j.nano.2020.102226] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
98 |
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020;5:924-37. [PMID: 32637755 DOI: 10.1016/j.bioactmat.2020.06.016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
99 |
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2019;25:3983-96. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
100 |
Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Adv Funct Mater 2020;30:2003054. [DOI: 10.1002/adfm.202003054] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
|
101 |
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020;24:12. [PMID: 32537239 DOI: 10.1186/s40824-020-00190-7] [Cited by in Crossref: 129] [Cited by in F6Publishing: 140] [Article Influence: 43.0] [Reference Citation Analysis]
|
102 |
Li R, Ng TSC, Garlin MA, Weissleder R, Miller MA. Understanding the In Vivo Fate of Advanced Materials by Imaging. Adv Funct Mater 2020;30:1910369. [DOI: 10.1002/adfm.201910369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
103 |
Cahalane C, Bonezzi J, Shelestak J, Clements R, Boika A, Yun YH, Shriver LP. Targeted Delivery of Anti-inflammatory and Imaging Agents to Microglial Cells with Polymeric Nanoparticles. Mol Pharmaceutics 2020;17:1816-26. [DOI: 10.1021/acs.molpharmaceut.9b00489] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
104 |
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano 2020;14:2678-701. [PMID: 32125825 DOI: 10.1021/acsnano.0c00173] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 24.3] [Reference Citation Analysis]
|
105 |
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS Nano 2020;14:2659-77. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
|
106 |
Sharma S, Dang S. Neuropsychological Disorders and their Nanocarriers. Curr Pharm Des 2020;26:2247-56. [PMID: 32091327 DOI: 10.2174/1381612826666200224111241] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
107 |
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020;12:E192. [PMID: 32102252 DOI: 10.3390/pharmaceutics12020192] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
108 |
Loureiro JA, Ramalho MJ, Carmo Pereira MD. Immuno-nanocarriers for brain delivery: limitations from in vitro to preclinical and clinical studies. Nanomedicine (Lond) 2020;15:543-5. [PMID: 32056491 DOI: 10.2217/nnm-2019-0402] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
109 |
Giunchedi P, Gavini E, Bonferoni MC. Nose-to-Brain Delivery. Pharmaceutics 2020;12:E138. [PMID: 32041344 DOI: 10.3390/pharmaceutics12020138] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
110 |
Tanaka M, Bohár Z, Vécsei L. Are Kynurenines Accomplices or Principal Villains in Dementia? Maintenance of Kynurenine Metabolism. Molecules 2020;25:E564. [PMID: 32012948 DOI: 10.3390/molecules25030564] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
|
111 |
Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Pharmaceutics 2020;12:E62. [PMID: 31940974 DOI: 10.3390/pharmaceutics12010062] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
112 |
Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020;8:E13. [PMID: 31941057 DOI: 10.3390/biomedicines8010013] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 17.3] [Reference Citation Analysis]
|
113 |
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2019;7:447. [PMID: 31998711 DOI: 10.3389/fbioe.2019.00447] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 21.7] [Reference Citation Analysis]
|
114 |
Sorrentino A, Cataldo A, Curatolo R, Tagliatesta P, Mosca L, Bellucci S. Novel optimized biopolymer-based nanoparticles for nose-to-brain delivery in the treatment of depressive diseases. RSC Adv 2020;10:28941-28949. [DOI: 10.1039/d0ra04212a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
115 |
Obulesu M. Nasal delivery nanoparticles. Parkinson's Disease Therapeutics 2020. [DOI: 10.1016/b978-0-12-819882-7.00008-8] [Reference Citation Analysis]
|
116 |
Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
117 |
Khatami F. Neural regenerative nanomedicine: current therapies and future direction. Neural Regenerative Nanomedicine 2020. [DOI: 10.1016/b978-0-12-820223-4.00009-7] [Reference Citation Analysis]
|
118 |
Nongkhlaw R, Patra P, Chavrasiya A, Jayabalan N, Dubey S. Biologics: Delivery options and formulation strategies. Drug Delivery Aspects 2020. [DOI: 10.1016/b978-0-12-821222-6.00006-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
119 |
Obulesu M. Liposomal maneuvers against Parkinson's disease. Parkinson's Disease Therapeutics 2020. [DOI: 10.1016/b978-0-12-819882-7.00007-6] [Reference Citation Analysis]
|
120 |
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. Geroscience 2020;42:117-39. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
121 |
Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 2019;13:3591-605. [PMID: 31695329 DOI: 10.2147/DDDT.S218708] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 21.5] [Reference Citation Analysis]
|
122 |
Alexander A, Agrawal M, Uddin A, Siddique S, Shehata AM, Shaker MA, Ata Ur Rahman S, Abdul MIM, Shaker MA. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019;14:5895-909. [PMID: 31440051 DOI: 10.2147/IJN.S210876] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 17.3] [Reference Citation Analysis]
|
123 |
Chircov C, Grumezescu AM, Holban AM. Magnetic Particles for Advanced Molecular Diagnosis. Materials (Basel) 2019;12:E2158. [PMID: 31284393 DOI: 10.3390/ma12132158] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
|
124 |
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019;11:E266. [PMID: 31181719 DOI: 10.3390/pharmaceutics11060266] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
|
125 |
Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. Materials (Basel) 2019;12:E1588. [PMID: 31096609 DOI: 10.3390/ma12101588] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 16.8] [Reference Citation Analysis]
|
126 |
Sudhakar S, Mani E. Rapid Dissolution of Amyloid β Fibrils by Silver Nanoplates. Langmuir 2019;35:6962-70. [DOI: 10.1021/acs.langmuir.9b00080] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
127 |
Rigon L, Salvalaio M, Pederzoli F, Legnini E, Duskey JT, D'Avanzo F, De Filippis C, Ruozi B, Marin O, Vandelli MA, Ottonelli I, Scarpa M, Tosi G, Tomanin R. Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. Int J Mol Sci 2019;20:E2014. [PMID: 31022913 DOI: 10.3390/ijms20082014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
|
128 |
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. Nanomaterials (Basel) 2019;9:E542. [PMID: 30987211 DOI: 10.3390/nano9040542] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
129 |
Daniel Mihai Teleanu, Cristina Chircov, Alexandru Mihai Grumezescu, Raluca Ioana Teleanu. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019;11:101. [PMID: 30813646 DOI: 10.3390/pharmaceutics11030101] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 9.8] [Reference Citation Analysis]
|
130 |
Dhungel K, Narayan J. Nanoparticle: Significance as Smart Material in Therapeutic Strategies in Drug Delivery in Biological Systems. Application of Biomedical Engineering in Neuroscience 2019. [DOI: 10.1007/978-981-13-7142-4_16] [Reference Citation Analysis]
|
131 |
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Ozkizilcik A, Manzhulo I, Mössler H, Sharma A. Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. Nanoneuroprotection and Nanoneurotoxicology 2019. [DOI: 10.1016/bs.pbr.2019.03.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
|
132 |
Navis A, Robinson-papp J. Futuristic Methods for Treatment of HIV in the Nervous System. Global Virology III: Virology in the 21st Century 2019. [DOI: 10.1007/978-3-030-29022-1_18] [Reference Citation Analysis]
|
133 |
Kotwal GJ, Martin M, Hattab EM, Chien S. Characterization of ATP Nanoliposome Treatment for Regeneration of Injured Spinal Cord. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy 2019. [DOI: 10.1007/978-3-662-59596-1_10] [Reference Citation Analysis]
|
134 |
Rai M, Yadav A, Ingle AP, Reshetilov A, Blanco-prieto MJ, Feitosa CM. Neurodegenerative Diseases: The Real Problem and Nanobiotechnological Solutions. Nanobiotechnology in Neurodegenerative Diseases 2019. [DOI: 10.1007/978-3-030-30930-5_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|