BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. Nanomaterials (Basel) 2018;8:E730. [PMID: 30223597 DOI: 10.3390/nano8090730] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Stoukatch S, Dupont F, Redouté J. Device Processing Challenges for Miniaturized Sensing Systems Targeting Biological Fluids. Biomedical Materials & Devices 2022. [DOI: 10.1007/s44174-022-00034-z] [Reference Citation Analysis]
2 Guha A, Sandström N, Ostanin VP, Klenerman D, Ghosh SK. Simpler and faster quartz crystal microbalance for macromolecule detection using fixed frequency drive. Sensors and Actuators B: Chemical 2022;358:131442. [DOI: 10.1016/j.snb.2022.131442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Feng L, Li C, Wang L, Li J, Liu X, Li Q, Luo S, Shen J. Self-Referenced Surface-Enhanced Raman Scattering Nanosubstrate for the Quantitative Detection of Neurotransmitters. ACS Appl Bio Mater 2022. [PMID: 35417131 DOI: 10.1021/acsabm.2c00272] [Reference Citation Analysis]
4 Yue W, Fan Y, Zhang T, Gong T, Long X, Luo Y, Gao P. Surface-enhanced Raman scattering with gold-coated silicon nanopillars arrays: The influence of size and spatial order. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120582. [PMID: 34802929 DOI: 10.1016/j.saa.2021.120582] [Reference Citation Analysis]
5 Tiankun W, Shashiong N. Anisotropy of DNA molecule detection and enhancement by GaN-based electronic sensor. Opt Lett 2022;47:417-20. [PMID: 35030623 DOI: 10.1364/OL.443465] [Reference Citation Analysis]
6 Xie B, Wang ZP, Zhang R, Zhang Z, He Y. A SERS aptasensor based on porous Au-NC nanoballoons for Staphylococcus aureus detection. Anal Chim Acta 2022;1190:339175. [PMID: 34857128 DOI: 10.1016/j.aca.2021.339175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Wang Z, Liu Y, Lu W, Fu YV, Zhou Z. Blood identification at the single-cell level based on a combination of laser tweezers Raman spectroscopy and machine learning. Biomed Opt Express 2021;12:7568-81. [PMID: 35003853 DOI: 10.1364/BOE.445149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Kaja S, Nag A. Bimetallic Ag-Cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit. Langmuir 2021;37:13027-37. [PMID: 34699226 DOI: 10.1021/acs.langmuir.1c02119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo SW. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. Nanomaterials (Basel) 2021;11:2619. [PMID: 34685057 DOI: 10.3390/nano11102619] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
10 Li C, Liu Y, Zhou X, Wang Y. A paper-based SERS assay for sensitive duplex cytokine detection towards the atherosclerosis-associated disease diagnosis. J Mater Chem B 2020;8:3582-9. [PMID: 31872850 DOI: 10.1039/c9tb02469g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
11 Golubewa L, Karpicz R, Matulaitiene I, Selskis A, Rutkauskas D, Pushkarchuk A, Khlopina T, Michels D, Lyakhov D, Kulahava T, Shah A, Svirko Y, Kuzhir P. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. ACS Appl Mater Interfaces 2020;12:50971-84. [PMID: 33107725 DOI: 10.1021/acsami.0c13570] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Peng Y, Cai P, Yang L, Liu Y, Zhu L, Zhang Q, Liu J, Huang Z, Yang Y. Theoretical and Experimental Studies of Ti3C2 MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing. ACS Omega 2020;5:26486-96. [PMID: 33110976 DOI: 10.1021/acsomega.0c03009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
13 Devi A, Chiu YT, Hsueh HT, Lin TF. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Res 2021;188:116478. [PMID: 33045635 DOI: 10.1016/j.watres.2020.116478] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
14 Low JSY, Thevarajah TM, Chang SW, Goh BT, Khor SM. Biosensing based on surface-enhanced Raman spectroscopy as an emerging/next-generation point-of-care approach for acute myocardial infarction diagnosis. Crit Rev Biotechnol 2020;40:1191-209. [PMID: 32811205 DOI: 10.1080/07388551.2020.1808582] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
15 Gholami MD, Sonar P, Ayoko GA, Izake EL. A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood. Sensors and Actuators B: Chemical 2020;310:127867. [DOI: 10.1016/j.snb.2020.127867] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
16 Rafalsky VV, Zyubin AY, Moiseeva EM, Samusev IG. Prospects for Raman spectroscopy in cardiology. Cardiovasc Ther Prev 2020;19:70-7. [DOI: 10.15829/1728-8800-2020-1-2394] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhuang J, Liu W, Yang L, Kang J, Zhang X. Bioluminescent Imaging and Tracking of Bacterial Transport in Soils. Methods Mol Biol 2020;2081:53-65. [PMID: 31721118 DOI: 10.1007/978-1-4939-9940-8_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Eryılmaz M, Yıldırım E, Tamer U. Lab on a chip: A versatile integration with spectroscopic techniques. Handbook on Miniaturization in Analytical Chemistry 2020. [DOI: 10.1016/b978-0-12-819763-9.00007-6] [Reference Citation Analysis]
19 Lim WY, Goh CH, Thevarajah TM, Goh BT, Khor SM. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens Bioelectron 2020;147:111792. [PMID: 31678828 DOI: 10.1016/j.bios.2019.111792] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
20 Chugh D, Jagadish C, Tan H. Large‐Area Hexagonal Boron Nitride for Surface Enhanced Raman Spectroscopy. Adv Mater Technol 2019;4:1900220. [DOI: 10.1002/admt.201900220] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
21 Škrabić M, Kosović M, Gotić M, Mikac L, Ivanda M, Gamulin O. Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals. Nanomaterials (Basel) 2019;9:E421. [PMID: 30871049 DOI: 10.3390/nano9030421] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
22 Camerlingo C, Portaccio M, Delfino I, Lepore M. Surface-Enhanced Raman Spectroscopy for Monitoring Extravirgin Olive Oil Bioactive Components. Journal of Chemistry 2019;2019:1-10. [DOI: 10.1155/2019/9537419] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
23 Ma L, Zhang Z, Li X. Non-invasive disease diagnosis using surface-enhanced Raman spectroscopy of urine and saliva. Applied Spectroscopy Reviews 2020;55:197-219. [DOI: 10.1080/05704928.2018.1562938] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]