BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials (Basel) 2018;8:E360. [PMID: 29882932 DOI: 10.3390/nano8060360] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Song W, Zhang X, Song Y, Fan K, Shao F, Long Y, Gao Y, Cai W, Lan X. Enhancing Photothermal Therapy Efficacy by In Situ Self-Assembly in Glioma. ACS Appl Mater Interfaces 2022. [PMID: 36206382 DOI: 10.1021/acsami.2c14413] [Reference Citation Analysis]
2 Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022;186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Chen B, Xia H, Mende LK, Lee C, Wang S, Chen A, Xu Z, Kankala RK. Trends in Layered Double Hydroxides‐Based Advanced Nanocomposites: Recent Progress and Latest Advancements. Adv Materials Inter. [DOI: 10.1002/admi.202200373] [Reference Citation Analysis]
4 Mohamed F, Oo MK, Chatterjee B, Alallam B. Biocompatible Supramolecular Mesoporous Silica Nanoparticles as the Next-Generation Drug Delivery System. Front Pharmacol 2022;13:886981. [DOI: 10.3389/fphar.2022.886981] [Reference Citation Analysis]
5 Liu Y, Han Y, Chen S, Liu J, Wang D, Huang Y. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma. Acta Pharmaceutica Sinica B 2022;12:2731-9. [DOI: 10.1016/j.apsb.2021.10.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Kankala RK, Han Y, Xia H, Wang S, Chen A. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01315-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
7 Hong J, Tang Y, Zhou M, Deng J, Hu H, Xu D. Polyethylene glycol-modified mesoporous polydopamine nanoparticles co-loaded with dimethylcurcumin and indocyanine green for combination therapy of castration-resistant prostate cancer. Journal of Drug Delivery Science and Technology 2022;69:103158. [DOI: 10.1016/j.jddst.2022.103158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Son MJ, Lee S. Antibacterial toxicity of mesoporous silica nanoparticles with functional decoration of specific organic moieties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;630:127612. [DOI: 10.1016/j.colsurfa.2021.127612] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, Alhawsawi AM, Baqer AA, Liu J, Xu S, Li Q, Noorazlan AM, Ahmed AAA, Flaifel MH, Paiman S, Nazrin N, Ali Al-Asbahi B, Wang J. The Effect of Precursor Concentration on the Particle Size, Crystal Size, and Optical Energy Gap of CexSn1-xO2 Nanofabrication. Nanomaterials (Basel) 2021;11:2143. [PMID: 34443973 DOI: 10.3390/nano11082143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. Nanoscale Adv 2021;3:3332-52. [PMID: 36133722 DOI: 10.1039/d1na00059d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
11 Xu PY, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Indocyanine Green-Based Codelivery Nanoplatforms for Combinatorial Therapy. ACS Biomater Sci Eng 2021;7:939-62. [PMID: 33539071 DOI: 10.1021/acsbiomaterials.0c01644] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
12 Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. European Polymer Journal 2021;146:110248. [DOI: 10.1016/j.eurpolymj.2020.110248] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 27.0] [Reference Citation Analysis]
13 Al-hada NM, Al-ghaili AM, Kasim H, Saleh MA, Baqiah H, Liu J, Wang J. Nanofabrication of (Cr2O3)x (NiO)1-x and the impact of precursor concentrations on nanoparticles conduct. Journal of Materials Research and Technology 2021;11:252-63. [DOI: 10.1016/j.jmrt.2021.01.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhang Y, Chen X, Liu L, Tian J, Hao L, Ran HT. Photoacoustic Imaging of Myocardial Infarction Region Using Non-Invasive Fibrin-Targeted Nanoparticles in a Rat Myocardial Ischemia-Reperfusion Model. Int J Nanomedicine 2021;16:1331-44. [PMID: 33628023 DOI: 10.2147/IJN.S293736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Kim S, Seo JH, Jeong DI, Yang M, Lee SY, Lee J, Cho HJ. Fenton-like reaction, glutathione reduction, and photothermal ablation-built-in hydrogels crosslinked by cupric sulfate for loco-regional cancer therapy. Biomater Sci 2021;9:847-60. [PMID: 33232388 DOI: 10.1039/d0bm01470b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
16 Ren Y, Liu H, Liu X, Zheng Y, Li Z, Li C, Yeung KWK, Zhu S, Liang Y, Cui Z, Wu S. Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science 2020;1:100245. [DOI: 10.1016/j.xcrp.2020.100245] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 26.5] [Reference Citation Analysis]
17 Shao J, Zheng X, Feng L, Lan T, Ding D, Cai Z, Zhu X, Liang R, Wei B. Targeting Fluorescence Imaging of RGD-Modified Indocyanine Green Micelles on Gastric Cancer. Front Bioeng Biotechnol 2020;8:575365. [PMID: 33102459 DOI: 10.3389/fbioe.2020.575365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Dai Q, Ren E, Xu D, Zeng Y, Chen C, Liu G. Indocyanine green-based nanodrugs: A portfolio strategy for precision medicine. Progress in Natural Science: Materials International 2020;30:577-88. [DOI: 10.1016/j.pnsc.2020.08.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
19 Hu Q, Wang K, Qiu L. 6-Aminocaproic acid as a linker to improve near-infrared fluorescence imaging and photothermal cancer therapy of PEGylated indocyanine green. Colloids Surf B Biointerfaces 2021;197:111372. [PMID: 33017715 DOI: 10.1016/j.colsurfb.2020.111372] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
20 Hu J, Luo H, Qu Q, Liao X, Huang C, Chen J, Cai Z, Bao Y, Chen G, Li B, Cui W. Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy. ACS Appl Mater Interfaces 2020;12:42511-20. [PMID: 32897691 DOI: 10.1021/acsami.0c11636] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
21 Sevieri M, Silva F, Bonizzi A, Sitia L, Truffi M, Mazzucchelli S, Corsi F. Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment? Front Chem 2020;8:535. [PMID: 32766203 DOI: 10.3389/fchem.2020.00535] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
22 Wen L, Hyoju R, Wang P, Shi L, Li C, Li M, Wang X. Hydrogen-Peroxide-Responsive Protein Biomimetic Nanoparticles for Photothermal-Photodynamic Combination Therapy of Melanoma. Lasers Surg Med 2021;53:390-9. [PMID: 32596824 DOI: 10.1002/lsm.23292] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Wang P, Jiang F, Chen B, Tang H, Zeng X, Cai D, Zhu M, Long R, Yang D, Kankala RK, Wang S, Liu Y. Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces 2020;189:110842. [DOI: 10.1016/j.colsurfb.2020.110842] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
24 Bardhan NM, Belcher AM. Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections. In: Benayas A, Hemmer E, Hong G, Jaque D, editors. Near Infrared-Emitting Nanoparticles for Biomedical Applications. Cham: Springer International Publishing; 2020. pp. 231-77. [DOI: 10.1007/978-3-030-32036-2_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 ZhuGe DL, Wang LF, Chen R, Li XZ, Huang ZW, Yao Q, Chen B, Zhao YZ, Xu HL, Yuan JD. Cross-linked nanoparticles of silk fibroin with proanthocyanidins as a promising vehicle of indocyanine green for photo-thermal therapy of glioma. Artif Cells Nanomed Biotechnol 2019;47:4293-304. [PMID: 31810396 DOI: 10.1080/21691401.2019.1699819] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020;15:675-704. [PMID: 32103936 DOI: 10.2147/IJN.S226186] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 31.0] [Reference Citation Analysis]
27 Mulikova T, Khamkhash L, Dukenbayev K, Molkenova A, Sh. Atabaev T. Stable Colloidal Silica Particles Doped with a Fluorescent Dye. IOP Conf Ser : Mater Sci Eng 2020;739:012039. [DOI: 10.1088/1757-899x/739/1/012039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Woo J, Park H, Na Y, Kim S, Choi WI, Lee JH, Seo H, Sung D. Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Adv 2020;10:2998-3004. [DOI: 10.1039/c9ra09106h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
29 Zhang R, Xue Y, Yang X. Biomedical optical properties of color light and near-infrared fluorescence separated-merged imager. J Innov Opt Health Sci 2019;12:1940001. [DOI: 10.1142/s1793545819400017] [Reference Citation Analysis]
30 Zhong J, Kankala RK, Wang SB, Chen AZ. Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers (Basel) 2019;11:E1627. [PMID: 31600886 DOI: 10.3390/polym11101627] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
31 Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019;11:E471. [PMID: 31547308 DOI: 10.3390/pharmaceutics11090471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
32 Ahmad K, Lee EJ, Shaikh S, Kumar A, Rao KM, Park SY, Jin JO, Han SS, Choi I. Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2021;69:325-36. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
33 Kankala RK, Zhang H, Liu C, Kanubaddi KR, Lee C, Wang S, Cui W, Santos HA, Lin K, Chen A. Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Adv Funct Mater 2019;29:1902652. [DOI: 10.1002/adfm.201902652] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 21.3] [Reference Citation Analysis]
34 Roberts S, Strome A, Choi C, Andreou C, Kossatz S, Brand C, Williams T, Bradbury M, Kircher MF, Reshetnyak YK, Grimm J, Lewis JS, Reiner T. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci Rep 2019;9:8550. [PMID: 31189972 DOI: 10.1038/s41598-019-44873-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
35 Liu CG, Kankala RK, Liao HY, Chen AZ, Wang SB. Engineered pH-responsive hydrazone-carboxylate complexes-encapsulated 2D matrices for cathepsin-mediated apoptosis in cancer. J Biomed Mater Res A 2019;107:1184-94. [PMID: 30650242 DOI: 10.1002/jbm.a.36610] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
36 Long RM, Dai QL, Zhou X, Cai DH, Hong YZ, Wang SB, Liu YG. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. Int J Nanomedicine 2018;13:8269-79. [PMID: 30584299 DOI: 10.2147/IJN.S180503] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
37 Tang B, Qian Y, Gou Y, Cheng G, Fang G. VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer. Molecules 2018;23:E2760. [PMID: 30366367 DOI: 10.3390/molecules23112760] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
38 Liu CG, Zeng YT, Kankala RK, Zhang SS, Chen AZ, Wang SB. Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues. Materials (Basel) 2018;11:E1832. [PMID: 30261642 DOI: 10.3390/ma11101832] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
39 Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018;10:E118. [PMID: 30082647 DOI: 10.3390/pharmaceutics10030118] [Cited by in Crossref: 396] [Cited by in F6Publishing: 406] [Article Influence: 99.0] [Reference Citation Analysis]
40 Piazzini V, Lemmi B, D’ambrosio M, Cinci L, Luceri C, Bilia A, Bergonzi M. Nanostructured Lipid Carriers as Promising Delivery Systems for Plant Extracts: The Case of Silymarin. Applied Sciences 2018;8:1163. [DOI: 10.3390/app8071163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]