BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ouyang H, Li C, Liu Q, Wen G, Liang A, Jiang Z. Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg(II) Based on the Gold Nanocatalysis. Nanomaterials (Basel) 2017;7:E114. [PMID: 28513536 DOI: 10.3390/nano7050114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Li D, Xia L, Li G. Recent Progress on the Applications of Nanozyme in Surface-Enhanced Raman Scattering. Chemosensors 2022;10:462. [DOI: 10.3390/chemosensors10110462] [Reference Citation Analysis]
2 Al-Onazi WA, Abdel-Lateef MA. Catalytic oxidation of O-phenylenediamine by silver nanoparticles for resonance Rayleigh scattering detection of mercury (II) in water samples. Spectrochim Acta A Mol Biomol Spectrosc 2022;264:120258. [PMID: 34384994 DOI: 10.1016/j.saa.2021.120258] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
3 Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOFNd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022;147:2369-2377. [DOI: 10.1039/d2an00549b] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Liu Y, Wang L, Dong Y, Peng W, Fu Y, Li Q, Fan Q, Wang Y, Wang Z. Current analytical methods for the determination of persulfate in aqueous solutions: A historical review. Chemical Engineering Journal 2021;416:129143. [DOI: 10.1016/j.cej.2021.129143] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
5 Guo Z, Chen P, Yosri N, Chen Q, Elseedi HR, Zou X, Yang H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Reviews International. [DOI: 10.1080/87559129.2021.1934005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
6 Li J, Wang S, Kang W, Li N, Guo F, Chang H, Wei W. Multifunctional gold nanoparticle based selective detection of esophageal squamous cell carcinoma cells using resonance Rayleigh scattering assay. Microchemical Journal 2021;163:105905. [DOI: 10.1016/j.microc.2020.105905] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Ouyang H, Liang A, Jiang Z. Fullerol Nanocatalysis and Trimodal Surface Plasmon Resonance for the Determination of Isocarbophos. Front Chem 2020;8:673. [PMID: 32923424 DOI: 10.3389/fchem.2020.00673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
9 Qasem M, El Kurdi R, Patra D. F108 stabilized CuO nanoparticles for highly selective and sensitive determination of mercury using resonance Rayleigh scattering spectroscopy. Anal Methods 2020;12:1631-8. [DOI: 10.1039/d0ay00066c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Li N, Liu SG, He YQ, Mai X. Resonance Rayleigh Scattering as a Tool for Isoelectric Point Monitoring and Iron(III) Cation Determination. Anal Sci 2019;35:1149-53. [DOI: 10.2116/analsci.19p177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 El-Kurdi R, Patra D. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Mikrochim Acta 2019;186:667. [PMID: 31485856 DOI: 10.1007/s00604-019-3755-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
12 Wang H, Li C, Luo Y, Jiang Z. A Sensitive Resonance Rayleigh Scattering Method for Na+ Based on Graphene Oxide Nanoribbon Catalysis. Int J Anal Chem 2018;2018:4017519. [PMID: 30627166 DOI: 10.1155/2018/4017519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
13 Li J, Yang Y, Zhang X, Zhang B, Chang H, Wei W. Resonance Rayleigh scattering assay for EGFR using antibody immobilized gold nanoparticles. Luminescence 2018;33:1326-32. [PMID: 30264501 DOI: 10.1002/bio.3550] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
14 Wang L, Li C, Luo Y, Jiang Z. Preparation of Highly Catalytic N-Doped Carbon Dots and Their Application in SERS Sulfate Sensing. Materials (Basel) 2018;11:E1655. [PMID: 30205487 DOI: 10.3390/ma11091655] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
15 Yang PC, Wu T, Lin YW. Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis. Sensors (Basel) 2018;18:E2807. [PMID: 30149653 DOI: 10.3390/s18092807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
16 Li C, Wang X, Liang A, Luo Y, Wen G, Jiang Z. A simple gold nanoplasmonic SERS method for trace Hg2+ based on aptamer-regulating graphene oxide catalysis. Luminescence 2018;33:1113-21. [PMID: 30014561 DOI: 10.1002/bio.3517] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ouyang H, Ling S, Liang A, Jiang Z. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sensors and Actuators B: Chemical 2018;258:739-44. [DOI: 10.1016/j.snb.2017.12.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 7.2] [Reference Citation Analysis]
18 Zhu J, Zhao B, Qi Y, Li J, Li X, Zhao J. Colorimetric determination of Hg(II) by combining the etching and aggregation effect of cysteine-modified Au-Ag core-shell nanorods. Sensors and Actuators B: Chemical 2018;255:2927-35. [DOI: 10.1016/j.snb.2017.09.113] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]