1 |
Xie G, Wang L, Li B, Zhang C, Zhang X. Transform commercial magnetic materials into injectable gel for magnetic hyperthermia therapy in vivo. Colloids Surf B Biointerfaces 2023;224:113185. [PMID: 36758458 DOI: 10.1016/j.colsurfb.2023.113185] [Reference Citation Analysis]
|
2 |
Apostolova I, Apostolov A, Wesselinowa J. Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia. Materials 2023;16:2353. [DOI: 10.3390/ma16062353] [Reference Citation Analysis]
|
3 |
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023;15:868. [DOI: 10.3390/pharmaceutics15030868] [Reference Citation Analysis]
|
4 |
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip 2023;23:1389-409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Reference Citation Analysis]
|
5 |
Sun X, Wu T, Duan M, Yuan B, Zhu X, Wang H, Liu J. Flexible Skin Patch Enabled Tumor Hybrid Thermophysical Therapy and Adaptive Antitumor Immune Response. Adv Healthc Mater 2023;12:e2202872. [PMID: 36515112 DOI: 10.1002/adhm.202202872] [Reference Citation Analysis]
|
6 |
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023;:1-32. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Reference Citation Analysis]
|
7 |
Luiz MT, Dutra JAP, Viegas JSR, de Araújo JTC, Tavares Junior AG, Chorilli M. Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023;15:751. [DOI: 10.3390/pharmaceutics15030751] [Reference Citation Analysis]
|
8 |
Brero F, Calzolari P, Albino M, Antoccia A, Arosio P, Berardinelli F, Bettega D, Ciocca M, Facoetti A, Gallo S, Groppi F, Innocenti C, Laurenzana A, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Scavone F, Veronese I, Lascialfari A. Proton Therapy, Magnetic Nanoparticles and Hyperthermia as Combined Treatment for Pancreatic BxPC3 Tumor Cells. Nanomaterials (Basel) 2023;13. [PMID: 36903670 DOI: 10.3390/nano13050791] [Reference Citation Analysis]
|
9 |
de Souza TC, Amorim JDP, Silva Junior CJGD, de Medeiros ADM, Santana Costa AF, Vinhas GM, Sarubbo LA. Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers (Basel) 2023;15. [PMID: 36850137 DOI: 10.3390/polym15040853] [Reference Citation Analysis]
|
10 |
Khizar S, Elkalla E, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opin Drug Deliv 2023;20:189-204. [PMID: 36608938 DOI: 10.1080/17425247.2023.2166484] [Reference Citation Analysis]
|
11 |
Kuwahata A, Hirota R, Sukhbaatar A, Kodama T, Yabukami S. Wireless temperature monitoring by using magnetic nanoparticles for biomedical applications on magnetic hyperthermia treatment. AIP Advances 2023;13:025142. [DOI: 10.1063/9.0000557] [Reference Citation Analysis]
|
12 |
Kuwahata A, Adachi Y, Yabukami S. Ultra-short pulse magnetic fields on effective magnetic hyperthermia for cancer therapy. AIP Advances 2023;13:025145. [DOI: 10.1063/9.0000558] [Reference Citation Analysis]
|
13 |
Balaban Hanoglu S, Harmanci D, Ucar N, Evran S, Timur S. Recent Approaches in Magnetic Nanoparticle-Based Biosensors of miRNA Detection. Magnetochemistry 2023;9:23. [DOI: 10.3390/magnetochemistry9010023] [Reference Citation Analysis]
|
14 |
Sharma A, Jangam A, Shen JLY, Ahmad A, Arepally N, Rodriguez B, Borrello J, Bouras A, Kleinberg L, Ding K, Hadjipanayis C, Kraitchman DL, Ivkov R, Attaluri A. Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers (Basel) 2023;15. [PMID: 36672278 DOI: 10.3390/cancers15020327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews 2022;473:214809. [DOI: 10.1016/j.ccr.2022.214809] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
16 |
Kothandaraman H, Kaliyamoorthy A, Rajaram A, Kalaiselvan CR, Sahu NK, Govindasamy P, Rajaram M. Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application. J Biol Phys 2022;48:383-97. [PMID: 36434309 DOI: 10.1007/s10867-022-09614-y] [Reference Citation Analysis]
|
17 |
Wang Z, Tong Q, Li T, Qian Y. Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.906350] [Reference Citation Analysis]
|
18 |
Bashir A, Khan S, Bashmal S, Iqbal N, Ullah S, Ali L. Designing Highly Efficient Temperature Controller for Nanoparticles Hyperthermia. Nanomaterials (Basel) 2022;12:3539. [PMID: 36234672 DOI: 10.3390/nano12193539] [Reference Citation Analysis]
|
19 |
Zhang Y, Wu Y, Qiao X, Lin T, Wang Y, Wang M. Biomaterial-based strategy for bone tumor therapy and bone defect regeneration: An innovative application option. Front Mater 2022;9:990931. [DOI: 10.3389/fmats.2022.990931] [Reference Citation Analysis]
|
20 |
Barrera G, Allia P, Tiberto P. Magnetization Dynamics of Superparamagnetic Nanoparticles for Magnetic Particle Spectroscopy and Imaging. Phys Rev Applied 2022;18. [DOI: 10.1103/physrevapplied.18.024077] [Reference Citation Analysis]
|
21 |
Siqueira ERL, Pinheiro WO, Aquino VRR, Coelho BCP, Bakuzis AF, Azevedo RB, Sousa MH, Morais PC. Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia. Nanomaterials (Basel) 2022;12:2760. [PMID: 36014626 DOI: 10.3390/nano12162760] [Reference Citation Analysis]
|
22 |
Vergnaud F, Kesse X, Jacobs A, Perton F, Begin-Colin S, Mertz D, Descamps S, Vichery C, Nedelec JM. Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomater Sci 2022. [PMID: 35723414 DOI: 10.1039/d2bm00319h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Ferreira LP, Reis CP, Robalo TT, Melo Jorge ME, Ferreira P, Gonçalves J, Hajalilou A, Cruz MM. Assisted Synthesis of Coated Iron Oxide Nanoparticles for Magnetic Hyperthermia. Nanomaterials (Basel) 2022;12:1870. [PMID: 35683726 DOI: 10.3390/nano12111870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14. [PMID: 35745705 DOI: 10.3390/pharmaceutics14061132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
25 |
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials (Basel) 2022;12:1807. [PMID: 35683663 DOI: 10.3390/nano12111807] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
26 |
Krasitskaya VV, Kudryavtsev AN, Yaroslavtsev RN, Velikanov DA, Bayukov OA, Gerasimova YV, Stolyar SV, Frank LA. Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins. Int J Mol Sci 2022;23:5410. [PMID: 35628220 DOI: 10.3390/ijms23105410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Santana GL, Crovace MC, Mazón EE, de Oliveira AJA, Pavan TZ, Zanotto ED. Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia. Materials (Basel) 2022;15:3187. [PMID: 35591525 DOI: 10.3390/ma15093187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Hussain SI, Mair LO, Willis AJ, Papavasiliou G, Liu B, Weinberg IN, Engelhard HH. Parallel Multichannel Assessment of Rotationally Manipulated Magnetic Nanoparticles. Nanotechnol Sci Appl 2022;15:1-15. [PMID: 35469141 DOI: 10.2147/NSA.S358931] [Reference Citation Analysis]
|
29 |
Fatima H, Jin ZY, Shao Z, Chen XJ. Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 2022;621:440-63. [PMID: 35483177 DOI: 10.1016/j.jcis.2022.04.087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Koksharov YA, Gubin SP, Taranov IV, Khomutov GB, Gulyaev YV. Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. J Commun Technol Electron 2022;67:101-16. [DOI: 10.1134/s1064226922020073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Shahbahrami B, Rabiee SM, Shidpour R, Salimi-kenari H. Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. J Electroceram. [DOI: 10.1007/s10832-022-00281-y] [Reference Citation Analysis]
|
32 |
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. Materials (Basel) 2022;15:2601. [PMID: 35407934 DOI: 10.3390/ma15072601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
|
33 |
Patel M, Prabhu A. Smart nanocomposite assemblies for multimodal cancer theranostics. Int J Pharm 2022;618:121697. [PMID: 35337903 DOI: 10.1016/j.ijpharm.2022.121697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Perecin CJ, Gratens XPM, Chitta VA, Leo P, de Oliveira AM, Yoshioka SA, Cerize NNP. Synthesis and Characterization of Magnetic Composite Theragnostics by Nano Spray Drying. Materials (Basel) 2022;15:1755. [PMID: 35268986 DOI: 10.3390/ma15051755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Sadeghi-ghadi Z, Behjou N, Ebrahimnejad P, Mahkam M, Goli HR, Lam M, Nokhodchi A. Improving Antibacterial Efficiency of Curcumin in Magnetic Polymeric Nanocomposites. J Pharm Innov. [DOI: 10.1007/s12247-022-09619-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
|
36 |
López Mendoza CM, Alcántara Quintana LE. Smart Drug Delivery Strategies for Cancer Therapy. Front Nanotechnol 2022;3:753766. [DOI: 10.3389/fnano.2021.753766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
El-boubbou K, Lemine OM, Ali R, Huwaizi SM, Al-humaid S, Alkushi A. Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New J Chem . [DOI: 10.1039/d1nj05791j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021;37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Zapata JC, Restrepo J. Self-Adaptive Acceptance Rate-Driven Markov Chain Monte Carlo Method Applied to the Study of Magnetic Nanoparticles. Computation 2021;9:124. [DOI: 10.3390/computation9110124] [Reference Citation Analysis]
|
40 |
Duong HDT, Nguyen DT, Kim KS. Effects of Process Variables on Properties of CoFe2O4 Nanoparticles Prepared by Solvothermal Process. Nanomaterials (Basel) 2021;11:3056. [PMID: 34835820 DOI: 10.3390/nano11113056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Gonçalves J, Nunes C, Ferreira L, Cruz MM, Oliveira H, Bastos V, Mayoral Á, Zhang Q, Ferreira P. Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency. Nanomaterials (Basel) 2021;11:2939. [PMID: 34835704 DOI: 10.3390/nano11112939] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Ivanov AO, Zverev VS. Dynamic Susceptibility of Ferrofluids: The Numerical Algorithm for the Inverse Problem of Magnetic Granulometry. Mathematics 2021;9:2450. [DOI: 10.3390/math9192450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
43 |
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials (Basel) 2021;11:2255. [PMID: 34578570 DOI: 10.3390/nano11092255] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
44 |
Marć M, Drzewiński A, Wolak WW, Najder-Kozdrowska L, Dudek MR. Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field. Nanomaterials (Basel) 2021;11:1737. [PMID: 34361123 DOI: 10.3390/nano11071737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
45 |
Alikhanzadeh-arani S, Almasi-kashi M, Sargazi S, Rahdar A, Arshad R, Baino F. CoNiZn and CoNiFe Nanoparticles: Synthesis, Physical Characterization, and In Vitro Cytotoxicity Evaluations. Applied Sciences 2021;11:5339. [DOI: 10.3390/app11125339] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|