BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel) 2020;10:E364. [PMID: 32093140 DOI: 10.3390/nano10020364] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 26.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhong Y, Du S, Dong Y. mRNA delivery in cancer immunotherapy. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2023.03.001] [Reference Citation Analysis]
2 Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1856. [PMID: 36180107 DOI: 10.1002/wnan.1856] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Volpini L, Monaco F, Santarelli L, Neuzil J, Tomasetti M. Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. Aspects of Molecular Medicine 2023. [DOI: 10.1016/j.amolm.2023.100005] [Reference Citation Analysis]
4 Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023;23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Reference Citation Analysis]
5 Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA ‐based Therapeutics: Challenges and Opportunities. Bioengineering & Transla Med 2023. [DOI: 10.1002/btm2.10492] [Reference Citation Analysis]
6 Miliotou AN, Foltopoulou PF, Ingendoh-Tsakmakidis A, Tsiftsoglou AS, Vizirianakis IS, Pappas IS, Papadopoulou LC. Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023;15. [PMID: 36678915 DOI: 10.3390/pharmaceutics15010286] [Reference Citation Analysis]
7 Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023;15. [PMID: 36678793 DOI: 10.3390/pharmaceutics15010166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xin X, Huang W. mRNA-Based Cancer Therapy and Challenges. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_204-1] [Reference Citation Analysis]
9 Lammari N, Rabti H, Louaer O, Elaissari A, Meniai AH. Encapsulation of bioactive compunds: Role of nanotechnology. Principles of Biomaterials Encapsulation : Volume One 2023. [DOI: 10.1016/b978-0-323-85947-9.00007-8] [Reference Citation Analysis]
10 Shaputkin ED, Nifant'ev IE, Bagrov VV, Shlyakhtin AV, Abashkin DA, Galiakberova AA, Ivchenko PV. Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. European Polymer Journal 2022;181:111644. [DOI: 10.1016/j.eurpolymj.2022.111644] [Reference Citation Analysis]
11 Karim ME, Haque ST, Al-busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022. [DOI: 10.1007/s12272-022-01418-x] [Reference Citation Analysis]
12 Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1870] [Reference Citation Analysis]
13 Toudeshkchouei MG, Tavakoli A, Mohammadghasemi H, Karimi A, Ai J, Rabiee M, Rabiee N. Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Medicinal Chemistry 2022. [DOI: 10.4155/fmc-2022-0027] [Reference Citation Analysis]
14 Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1025740] [Reference Citation Analysis]
15 Shaabani E, Sharifiaghdam M, Faridi-majidi R, De Smedt SC, Braeckmans K, Fraire JC. Gene therapy to enhance angiogenesis in chronic wounds. Molecular Therapy - Nucleic Acids 2022;29:871-899. [DOI: 10.1016/j.omtn.2022.08.020] [Reference Citation Analysis]
16 Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022;13:967505. [DOI: 10.3389/fimmu.2022.967505] [Reference Citation Analysis]
17 Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science. [DOI: 10.1002/advs.202201740] [Reference Citation Analysis]
18 Broudic K, Amberg A, Schaefer M, Spirkl HP, Bernard MC, Desert P. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol Appl Pharmacol 2022;:116143. [PMID: 35843341 DOI: 10.1016/j.taap.2022.116143] [Reference Citation Analysis]
19 Lu ZH, Li J, Dmitriev IP, Kashentseva EA, Curiel DT. Efficient Genome Editing Achieved via Plug-and-Play Adenovirus Piggyback Transport of Cas9/gRNA Complex on Viral Capsid Surface. ACS Nano 2022. [PMID: 35749339 DOI: 10.1021/acsnano.2c00909] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Mol Pharm 2022;19:1669-86. [PMID: 35594500 DOI: 10.1021/acs.molpharmaceut.1c00916] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
21 Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials 2022;12:203-13. [DOI: 10.1016/j.bioactmat.2021.10.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 32.0] [Reference Citation Analysis]
23 Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
25 Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022;11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Daniel S, Kis Z, Kontoravdi C, Shah N. Quality by Design for enabling RNA platform production processes. Trends in Biotechnology 2022. [DOI: 10.1016/j.tibtech.2022.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Cholkar SS, Gawade AR, Kuchekar AB. The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosci , Biotech Res Asia 2022;19:183-189. [DOI: 10.13005/bbra/2977] [Reference Citation Analysis]
28 Cholkar SS, Gawade AR, Kuchekar AB. Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosci , Biotech Res Asia 2022;19:199-213. [DOI: 10.13005/bbra/2979] [Reference Citation Analysis]
29 Nakanishi H, Saito H, Itaka K. Versatile Design of Intracellular Protein-Responsive Translational Regulation System for Synthetic mRNA. ACS Synth Biol 2022;11:1077-85. [PMID: 35188747 DOI: 10.1021/acssynbio.1c00567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022. [PMID: 35235159 DOI: 10.1007/s11033-022-07132-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Wang Y, Zhang R, Tang L, Yang L. Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics 2022;14:512. [DOI: 10.3390/pharmaceutics14030512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
32 Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022;83:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ye Z, Chen J, Zhao X, Li Y, Harmon J, Huang C, Chen J, Xu Q. In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery. ACS Biomater Sci Eng 2022. [PMID: 35104103 DOI: 10.1021/acsbiomaterials.1c01532] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
35 Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022;181:114033. [PMID: 34808227 DOI: 10.1016/j.addr.2021.114033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Hauck ES, Hecker JG. Non-Viral Delivery of RNA Gene Therapy to the Central Nervous System. Pharmaceutics 2022;14:165. [PMID: 35057059 DOI: 10.3390/pharmaceutics14010165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Jani D, Boyanapalli R, Cao L. Gene Therapy and Cell Therapy: Bioanalytical Challenges and Practical Solutions. An Introduction to Bioanalysis of Biopharmaceuticals 2022. [DOI: 10.1007/978-3-030-97193-9_5] [Reference Citation Analysis]
38 Yau Y, Mishra S, Easterling M, Kumar A. COVID-19 mRNA Vaccines. Biotechnological Innovations for Environmental Bioremediation 2022. [DOI: 10.1007/978-981-16-9001-3_31] [Reference Citation Analysis]
39 Miliotou AN, Pappas IS, Vizirianakis IS, Papadopoulou LC. In Vitro-Transcribed mRNAs as a New Generation of Therapeutics in the Dawn of Twenty-First Century: Exploitation of Peptides as Carriers for Their Intracellular Delivery. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_10] [Reference Citation Analysis]
40 Gómez-aguado I, Rodríguez-castejón J, Beraza-millor M, Rodríguez-gascón A, del Pozo-rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.010] [Reference Citation Analysis]
41 Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022;12:8889-900. [DOI: 10.1039/d2ra00713d] [Reference Citation Analysis]
42 Raj A, Swathy K, Sajayan K, Kappally S. Advanced drug delivery systems involving lysosomal storage disorders for Fabry disease. Drug Delivery Systems for Metabolic Disorders 2022. [DOI: 10.1016/b978-0-323-99616-7.00006-2] [Reference Citation Analysis]
43 Parhiz H, Brenner JS, Patel P, Papp TE, Shahnawaz H, Li Q, Shi R, Zamora M, Yadegari A, Marcos-Contreras OA, Natesan A, Pardi N, Shuvaev VV, Kiseleva R, Myerson J, Uhler T, Riley RS, Han X, Mitchell MJ, Lam K, Heyes J, Weissman D, Muzykantov V. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release 2021:S0168-3659(21)00680-5. [PMID: 34953981 DOI: 10.1016/j.jconrel.2021.12.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
44 Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021;13:2090. [PMID: 34959371 DOI: 10.3390/pharmaceutics13122090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
45 Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021;179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
46 Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun 2021;12:6777. [PMID: 34811367 DOI: 10.1038/s41467-021-26926-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
47 Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021;11:1192. [PMID: 34833067 DOI: 10.3390/life11111192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Mayorga C, Perez-Inestrosa E, Rojo J, Ferrer M, Montañez MI. Role of nanostructures in allergy: Diagnostics, treatments and safety. Allergy 2021;76:3292-306. [PMID: 33559903 DOI: 10.1111/all.14764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Loo J, Sicher I, Goff A, Kim O, Clary N, Alexeev A, Sulchek T, Zamarayeva A, Han S, Calero-Garcia M. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep 2021;11:21407. [PMID: 34725429 DOI: 10.1038/s41598-021-00893-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev 2021;177:113930. [PMID: 34403751 DOI: 10.1016/j.addr.2021.113930] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
51 Shuai Q, Zhu F, Zhao M, Yan Y. mRNA delivery via non-viral carriers for biomedical applications. Int J Pharm 2021;607:121020. [PMID: 34416327 DOI: 10.1016/j.ijpharm.2021.121020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
52 Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems.. [DOI: 10.1101/2021.09.21.461221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Di Trani CA, Fernandez-Sendin M, Cirella A, Segués A, Olivera I, Bolaños E, Melero I, Berraondo P. Advances in mRNA-based drug discovery in cancer immunotherapy. Expert Opin Drug Discov 2021;:1-13. [PMID: 34496689 DOI: 10.1080/17460441.2021.1978972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
54 Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Vicente-Pascual M, Rodríguez-Gascón A, Garelli S, Battaglia L, Del Pozo-Rodríguez A, Solinís MÁ. mRNA-Based Nanomedicinal Products to Address Corneal Inflammation by Interleukin-10 Supplementation. Pharmaceutics 2021;13:1472. [PMID: 34575548 DOI: 10.3390/pharmaceutics13091472] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021;131:16-40. [PMID: 34153512 DOI: 10.1016/j.actbio.2021.06.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 31] [Article Influence: 23.5] [Reference Citation Analysis]
56 Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
57 Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021;176:113900. [PMID: 34324884 DOI: 10.1016/j.addr.2021.113900] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
58 Umapathi A, Kumawat M, Daima HK. Engineered nanomaterials for biomedical applications and their toxicity: a review. Environ Chem Lett. [DOI: 10.1007/s10311-021-01307-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
59 Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021;13:2833. [PMID: 34451371 DOI: 10.3390/polym13162833] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
60 Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021;13:1106. [PMID: 34452067 DOI: 10.3390/pharmaceutics13081106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
61 Wang CH, Wei YH. Therapeutic Perspectives of Thermogenic Adipocytes in Obesity and Related Complications. Int J Mol Sci 2021;22:7177. [PMID: 34281227 DOI: 10.3390/ijms22137177] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
62 Khayamabed R, Rezaie N, Poorgolizadeh E, Homayouni Moghadam F, Dorminani K, Nasr Esfahani MH; Department of Biology, ACECR Institute of Higher Education, Isfahan, Iran, Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Department of Biology, ACECR Institute of Higher Education, Isfahan, Iran, Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Efficient Modified-mRNA Transfection in Neural Stem Cells. Physiol Pharmacol 2021;0:0-0. [DOI: 10.52547/phypha.27.1.5] [Reference Citation Analysis]
63 Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Cited by in Crossref: 156] [Cited by in F6Publishing: 186] [Article Influence: 78.0] [Reference Citation Analysis]
64 Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021;13:945. [PMID: 34202584 DOI: 10.3390/pharmaceutics13070945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
65 Jazayeri SD, Lim HX, Shameli K, Yeap SK, Poh CL. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front Pharmacol 2021;12:682286. [PMID: 34149426 DOI: 10.3389/fphar.2021.682286] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
66 Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
67 Rhee J, Shih KC. Use of Gene Therapy in Retinal Ganglion Cell Neuroprotection: Current Concepts and Future Directions. Biomolecules 2021;11:581. [PMID: 33920974 DOI: 10.3390/biom11040581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Padhi PK, Charrua-santos F. Quantum Biotech and Internet of Virus Things: Towards a Theoretical Framework. ASI 2021;4:27. [DOI: 10.3390/asi4020027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin Investig Drugs 2021;30:529-41. [PMID: 33641576 DOI: 10.1080/13543784.2021.1896702] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
70 Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021;20:55. [PMID: 33761944 DOI: 10.1186/s12943-021-01346-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
71 Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S Jr. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist 2021;4:44-68. [PMID: 35582007 DOI: 10.20517/cdr.2020.59] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
72 Mildner R, Hak S, Parot J, Hyldbakk A, Borgos SE, Some D, Johann C, Caputo F. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021;163:252-65. [PMID: 33745980 DOI: 10.1016/j.ejpb.2021.03.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
73 Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021;10:100105. [PMID: 33912824 DOI: 10.1016/j.mtbio.2021.100105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
74 Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021;13:206. [PMID: 33540942 DOI: 10.3390/pharmaceutics13020206] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 28.5] [Reference Citation Analysis]
75 Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, Qari SH. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics 2021;13. [PMID: 33499096 DOI: 10.3390/pharmaceutics13020140] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
76 Karpenko LI, Rudometov AP, Sharabrin SV, Shcherbakov DN, Borgoyakova MB, Bazhan SI, Volosnikova EA, Rudometova NB, Orlova LA, Pyshnaya IA, Zaitsev BN, Volkova NV, Azaev MS, Zaykovskaya AV, Pyankov OV, Ilyichev AA. Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines (Basel) 2021;9:76. [PMID: 33494530 DOI: 10.3390/vaccines9020076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
77 Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021;9:65. [PMID: 33478109 DOI: 10.3390/vaccines9010065] [Cited by in Crossref: 155] [Cited by in F6Publishing: 168] [Article Influence: 77.5] [Reference Citation Analysis]
78 Ohanube GAK, Obeta UM. Generation of mRNA Vaccine: An Analysis of Two Types of Vectors. Int j pharm phytopharm res 2021;11:24-32. [DOI: 10.51847/0nhpnuouhg] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Dey C, Raina K, Haridhasapavalan KK, Thool M, Sundaravadivelu PK, Adhikari P, Gogoi R, Thummer RP. An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications. Recent Advances in iPSC Technology 2021. [DOI: 10.1016/b978-0-12-822231-7.00011-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
80 Ohanube GAK, Obeta UM. mRNA Vaccine: Determinants of Clinical Efficacy, and Optimization of Pharmacological Effects. Int j pharm phytopharm res 2021;11:1-10. [DOI: 10.51847/175q0zatao] [Reference Citation Analysis]
81 Espinar Buitrago MDLS, Muñoz Fernández MÁ. Dendrimers and their applications in biomedicine: Dendrimer-drug interaction, a new therapeutic alternative. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00019-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Pozo-Rodríguez AD, Solinís Aspiazu MÁ. Nucleic Acid Delivery by Solid Lipid Nanoparticles Containing Switchable Lipids: Plasmid DNA vs. Messenger RNA. Molecules 2020;25:E5995. [PMID: 33352904 DOI: 10.3390/molecules25245995] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
83 Tarakanchikova YV, Muslimov AR, Zyuzin MV, Nazarenko I, Timin AS, Sukhorukov GB, Lepik KV. Layer‐by‐Layer‐Assembled Capsule Size Affects the Efficiency of Packaging and Delivery of Different Genetic Cargo. Part Part Syst Charact 2021;38:2000228. [DOI: 10.1002/ppsc.202000228] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
84 Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology 2020;60:101961. [DOI: 10.1016/j.jddst.2020.101961] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
85 Guo Q, Wang L, Xu P, Geng F, Guo J, Dong L, Bao X, Zhou Y, Feng M, Wu J, Wu H, Yu B, Zhang H, Yu X, Kong W. Heterologous prime-boost immunization co-targeting dual antigens inhibit tumor growth and relapse. Oncoimmunology 2020;9:1841392. [PMID: 33224629 DOI: 10.1080/2162402X.2020.1841392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
86 Guevara ML, Persano F, Persano S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front Chem 2020;8:589959. [PMID: 33195094 DOI: 10.3389/fchem.2020.589959] [Cited by in Crossref: 75] [Cited by in F6Publishing: 84] [Article Influence: 25.0] [Reference Citation Analysis]
87 Liu Y, Liu Z, Cui W, Li Y, Qin X, Zhang M, Lin Y. Tetrahedral framework nucleic acids as an advanced drug delivery system for oligonucleotide drugs. APL Materials 2020;8:100701. [DOI: 10.1063/5.0025211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
88 Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 108] [Cited by in F6Publishing: 107] [Article Influence: 36.0] [Reference Citation Analysis]
89 Okay S, Özge Özcan Ö, Karahan M; 1 Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey, 2 Department of Molecular Neuroscience, Institute of Health Sciences, Üsküdar University, Istanbul, Turkey, 3 Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, Istanbul, Turkey. . AIMS Biophysics 2020;7:323-38. [DOI: 10.3934/biophy.2020023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]