BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wen X, Huang Q, Nie D, Zhao X, Cao H, Wu W, Han Z. A Multifunctional N-Doped Cu-MOFs (N-Cu-MOF) Nanomaterial-Driven Electrochemical Aptasensor for Sensitive Detection of Deoxynivalenol. Molecules 2021;26:2243. [PMID: 33924544 DOI: 10.3390/molecules26082243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Cui J, Wu B, Li Z, Bai Y, Kan L, Wang M, He L, Du M. Hierarchical CoCoPBA@PCN-221 nanostructure for the highly sensitive detection of deoxynivalenol in foodstuffs. Food Chemistry 2023;403:134370. [DOI: 10.1016/j.foodchem.2022.134370] [Reference Citation Analysis]
2 Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023;11. [DOI: 10.3389/fchem.2023.1116524] [Reference Citation Analysis]
3 Gab-allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins 2023;15:85. [DOI: 10.3390/toxins15020085] [Reference Citation Analysis]
4 Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. Biosensors (Basel) 2023;13. [PMID: 36671974 DOI: 10.3390/bios13010140] [Reference Citation Analysis]
5 Kalambate P, Thirabowonkitphithan P, Kaewarsa P, Permpoka K, Radwan A, Shakoor R, Kalambate R, Khosropour H, Huang Y, Laiwattanapaisal W. Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Materials Today Chemistry 2022;26:101235. [DOI: 10.1016/j.mtchem.2022.101235] [Reference Citation Analysis]
6 Asgari S, Mohammadi Ziarani G, Badiei A, Rostami M, Kiani M. Reduced cytotoxicity and boosted antibacterial activity of a hydrophilic nano-architecture magnetic nitrogen-rich copper-based MOF. Materials Today Communications 2022;33:104393. [DOI: 10.1016/j.mtcomm.2022.104393] [Reference Citation Analysis]
7 Sohrabi H, Salahshour Sani P, Zolfaghari R, Majidi MR, Yoon Y, Khataee A. MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods. Molecules 2022;27:7511. [DOI: 10.3390/molecules27217511] [Reference Citation Analysis]
8 Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134842] [Reference Citation Analysis]
9 Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022;:1-22. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Reference Citation Analysis]
10 Lin X, Li C, Meng X, Yu W, Duan N, Wang Z, Wu S. CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. Journal of Hazardous Materials 2022;433:128750. [DOI: 10.1016/j.jhazmat.2022.128750] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
11 Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022;:1-34. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Melinte G, Hosu O, Cristea C, Marrazza G. DNA sensing technology a useful food scanning tool. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116679] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022;133:108684. [DOI: 10.1016/j.foodcont.2021.108684] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
14 Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins 2022;14:73. [DOI: 10.3390/toxins14020073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
15 Tahoun IF, Gab-allah MA, Yamani RN, Shehata AB. Development and validation of a reliable LC-MS/MS method for simultaneous determination of deoxynivalenol and T-2 toxin in maize and oats. Microchemical Journal 2021;169:106599. [DOI: 10.1016/j.microc.2021.106599] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Tan X, Yu W, Wang Y, Song P, Xu Q, Ming D, Yang Y. A switchable and signal-amplified aptasensor based on metal organic frameworks as the quencher for turn-on detection of T-2 mycotoxin. Anal Bioanal Chem 2021;413:6595-603. [PMID: 34430983 DOI: 10.1007/s00216-021-03625-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]