BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kilian K, Cheda Ł, Sitarz M, Szkliniarz K, Choiński J, Stolarz A. Separation of 44Sc from Natural Calcium Carbonate Targets for Synthesis of 44Sc-DOTATATE. Molecules 2018;23:E1787. [PMID: 30036947 DOI: 10.3390/molecules23071787] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Chakravarty R, Ram R, Patra S, Sarma HD, Chakraborty S. A solvent extraction-based procedure for removal of 46Sc impurity from reactor produced [45Ca]CaCl2 for its potential use in bone pain palliation. Applied Radiation and Isotopes 2022;188:110352. [DOI: 10.1016/j.apradiso.2022.110352] [Reference Citation Analysis]
2 Qaim SM, Spahn I, Scholten B, Spellerberg S, Neumaier B. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0017] [Reference Citation Analysis]
3 Forgács V, Fekete A, Gyuricza B, Szücs D, Trencsényi G, Szikra D. Methods for the Determination of Transition Metal Impurities in Cyclotron-Produced Radiometals. Pharmaceuticals 2022;15:147. [DOI: 10.3390/ph15020147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. Bio-Algorithms and Med-Systems 2022;17:241-57. [DOI: 10.1515/bams-2021-0136] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
5 Kurakina ES, Wharton L, Hoehr C, Orvig C, Magomedbekov EP, Filosofov D, Radchenko V. Improved separation scheme for 44Sc produced by irradiation of natCa targets with 12.8 MeV protons. Nucl Med Biol 2021;104-105:22-7. [PMID: 34847480 DOI: 10.1016/j.nucmedbio.2021.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Pęgier M, Dróżdż P, Pomarański P, Pyrzyńska K. Magnetic hybrid nanoparticles modified with morin for the removal of Sc(III) from aqueous solutions. Microchemical Journal 2021;170:106683. [DOI: 10.1016/j.microc.2021.106683] [Reference Citation Analysis]
7 Larenkov AA, Makichyan AG, Iatsenko VN. Separation of 44Sc from 44Ti in the Context of A Generator System for Radiopharmaceutical Purposes with the Example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T Synthesis. Molecules 2021;26:6371. [PMID: 34770780 DOI: 10.3390/molecules26216371] [Reference Citation Analysis]
8 Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, Garnuszek P. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem 2021;6:19. [PMID: 34036449 DOI: 10.1186/s41181-021-00131-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
9 Zhou FY, He D, Miao X, Yang C, Dong JH, Zheng HT, Cheng Z, Liu X, Zhu ZL. Development of an Automatic Column Chromatography Separation Device for Metal Isotope Analysis Based on Droplet Counting. Anal Chem 2021;93:7196-203. [PMID: 33966373 DOI: 10.1021/acs.analchem.1c00145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vaughn BA, Koller AJ, Boros E. Aqueous chemistry of the smallest rare earth: Comprehensive characterization of radioactive and non-radioactive scandium complexes for biological applications. Methods Enzymol 2021;651:343-71. [PMID: 33888209 DOI: 10.1016/bs.mie.2021.01.024] [Reference Citation Analysis]
11 Mousa AM, Abdel Aziz OA, Al-hagar OE, Gizawy MA, Allan KF, Attallah MF. Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47Sc separation of cancer theranostics application from irradiated Ca target. Applied Radiation and Isotopes 2020;166:109389. [DOI: 10.1016/j.apradiso.2020.109389] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
12 Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021;92:241-69. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
13 Sitarz M, Cussonneau J, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Applied Radiation and Isotopes 2020;155:108898. [DOI: 10.1016/j.apradiso.2019.108898] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
14 Gizawy M, Aydia M, Abdel Monem IM, Shamsel-din H, Siyam T. Radiochemical separation of reactor produced Sc-47 from natural calcium target using Poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Applied Radiation and Isotopes 2019;150:87-94. [DOI: 10.1016/j.apradiso.2019.05.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gizawy MA, Mohamed NMA, Aydia MI, Soliman MA, Shamsel-din HA. Feasibility study on production of Sc-47 from neutron irradiated Ca target for cancer theranostics applications. Radiochimica Acta 2020;108:207-15. [DOI: 10.1515/ract-2018-3070] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]