BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gerach T, Schuler S, Fröhlich J, Lindner L, Kovacheva E, Moss R, Wülfers EM, Seemann G, Wieners C, Loewe A. Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach. Mathematics 2021;9:1247. [DOI: 10.3390/math9111247] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Gerach T, Schuler S, Wachter A, Loewe A. The Impact of Standard Ablation Strategies for Atrial Fibrillation on Cardiovascular Performance in a Four-Chamber Heart Model. Cardiovasc Eng Technol 2023. [PMID: 36652165 DOI: 10.1007/s13239-022-00651-1] [Reference Citation Analysis]
2 Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede' L, Quarteroni A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. Int J Numer Method Biomed Eng 2022;:e3678. [PMID: 36579792 DOI: 10.1002/cnm.3678] [Reference Citation Analysis]
3 Lindner LP, Gerach T, Jahnke T, Loewe A, Weiss D, Wieners C. Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology. Int J Numer Method Biomed Eng 2022;:e3666. [PMID: 36562492 DOI: 10.1002/cnm.3666] [Reference Citation Analysis]
4 Gillette K, Gsell MAF, Strocchi M, Grandits T, Neic A, Manninger M, Scherr D, Roney CH, Prassl AJ, Augustin CM, Vigmond EJ, Plank G. A personalized real-time virtual model of whole heart electrophysiology. Front Physiol 2022;13:907190. [DOI: 10.3389/fphys.2022.907190] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Bai J, Lu Y, Wang H, Zhao J. How synergy between mechanistic and statistical models is impacting research in atrial fibrillation. Front Physiol 2022;13:957604. [DOI: 10.3389/fphys.2022.957604] [Reference Citation Analysis]
6 Odeigah OO, Valdez-Jasso D, Wall ST, Sundnes J. Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload. Front Physiol 2022;13:948936. [PMID: 36091369 DOI: 10.3389/fphys.2022.948936] [Reference Citation Analysis]
7 Gerach T, Appel S, Wilczek J, Golba KS, Jadczyk T, Loewe A. Dyssynchronous Left Ventricular Activation is Insufficient for the Breakdown of Wringing Rotation. Front Physiol 2022;13:838038. [DOI: 10.3389/fphys.2022.838038] [Reference Citation Analysis]
8 Karabelas E, Gsell MA, Haase G, Plank G, Augustin CM. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity. Computer Methods in Applied Mechanics and Engineering 2022;394:114887. [DOI: 10.1016/j.cma.2022.114887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jung A, Gsell MAF, Augustin CM, Plank G. An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics—A Multi-Fidelity Approach for Personalising Active Mechanics. Mathematics 2022;10:823. [DOI: 10.3390/math10050823] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Piersanti R, Regazzoni F, Salvador M, Corno AF, Dede’ L, Vergara C, Quarteroni A. 3D–0D closed-loop model for the simulation of cardiac biventricular electromechanics. Computer Methods in Applied Mechanics and Engineering 2022;391:114607. [DOI: 10.1016/j.cma.2022.114607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Regazzoni F, Salvador M, Africa P, Fedele M, Dedè L, Quarteroni A. A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics 2022. [DOI: 10.1016/j.jcp.2022.111083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
12 Loewe A, Martínez Díaz P, Nagel C, Sánchez J. Cardiac Digital Twin Modeling. Innovative Treatment Strategies for Clinical Electrophysiology 2022. [DOI: 10.1007/978-981-19-6649-1_7] [Reference Citation Analysis]
13 Singla J, Burdsall K, Cantrell B, Halsey JR, Mcdowell A, Mcgregor C, Mittal S, Stevens RC, Su S, Thomopoulos A, Vaillant T, White KL, Zhang B, Berman HM. A new visual design language for biological structures in a cell. Structure 2022. [DOI: 10.1016/j.str.2022.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Salvador M, Fedele M, Africa PC, Sung E, Dede' L, Prakosa A, Chrispin J, Trayanova N, Quarteroni A. Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Comput Biol Med 2021;136:104674. [PMID: 34340126 DOI: 10.1016/j.compbiomed.2021.104674] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Regazzoni F, Quarteroni A. Accelerating the convergence to a limit cycle in 3D cardiac electromechanical simulations through a data-driven 0D emulator. Comput Biol Med 2021;135:104641. [PMID: 34298436 DOI: 10.1016/j.compbiomed.2021.104641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Plank G, Loewe A, Neic A, Augustin C, Huang YL, Gsell MAF, Karabelas E, Nothstein M, Prassl AJ, Sánchez J, Seemann G, Vigmond EJ. The openCARP simulation environment for cardiac electrophysiology. Comput Methods Programs Biomed 2021;208:106223. [PMID: 34171774 DOI: 10.1016/j.cmpb.2021.106223] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 12.5] [Reference Citation Analysis]