BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials (Basel). 2019;12. [PMID: 30769821 DOI: 10.3390/ma12040568] [Cited by in Crossref: 249] [Cited by in F6Publishing: 262] [Article Influence: 83.0] [Reference Citation Analysis]
Number Citing Articles
1 Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials 2023;20:137-63. [DOI: 10.1016/j.bioactmat.2022.05.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
2 Sriwong C, Boonrungsiman S, Sukyai P. Sugarcane bagasse cellulose-based scaffolds incorporated hydroxyapatite for promoting proliferation, adhesion and differentiation of osteoblasts. Industrial Crops and Products 2023;192:115979. [DOI: 10.1016/j.indcrop.2022.115979] [Reference Citation Analysis]
3 Bogala MR. Three-dimensional (3D) printing of hydroxyapatite-based scaffolds: A review. Bioprinting 2022;28:e00244. [DOI: 10.1016/j.bprint.2022.e00244] [Reference Citation Analysis]
4 Keshavarz S, Okoro OV, Hamidi M, Derakhshankhah H, Azizi M, Mohammad Nabavi S, Gholizadeh S, Amini SM, Shavandi A, Luque R, Samadian H. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coordination Chemistry Reviews 2022;472:214770. [DOI: 10.1016/j.ccr.2022.214770] [Reference Citation Analysis]
5 Lavanya K, Abinaya S, Selvamurugan N. Recent advances in one-dimensional nanowire-incorporated bone tissue engineering scaffolds. Materials Today Communications 2022;33:104229. [DOI: 10.1016/j.mtcomm.2022.104229] [Reference Citation Analysis]
6 Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1051678] [Reference Citation Analysis]
7 Wazeer A, Das A, Sinha A, Inaba K, Ziyi S, Karmakar A. Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects. Prog Addit Manuf 2022. [DOI: 10.1007/s40964-022-00362-y] [Reference Citation Analysis]
8 Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022;14:4931. [DOI: 10.3390/polym14224931] [Reference Citation Analysis]
9 Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.987195] [Reference Citation Analysis]
10 Manohar SS, Das C, Kakati V. Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Printing and Additive Manufacturing 2022. [DOI: 10.1089/3dp.2022.0216] [Reference Citation Analysis]
11 Simorgh S, Alasvand N, Khodadadi M, Ghobadi F, Malekzadeh Kebria M, Brouki Milan P, Kargozar S, Baino F, Mobasheri A, Mozafari M. Additive Manufacturing of Bioactive Glass Biomaterials. Methods 2022. [DOI: 10.1016/j.ymeth.2022.10.010] [Reference Citation Analysis]
12 Chen Z, Chen Y, Ding J, Yu L. Blending strategy to modify PEEK-based orthopedic implants. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110427] [Reference Citation Analysis]
13 Ngouangna EN, Jaafar MZ, Norddin M, Agi A, Risal AR, Mamah SC, Oseh JO. The effect of hydroxyapatite nanoparticles on wettability and brine-oil interfacial tension as enhance oil recovery mechanisms. Journal of Petroleum Science and Engineering 2022;218:110941. [DOI: 10.1016/j.petrol.2022.110941] [Reference Citation Analysis]
14 Caiazzo F, Alfieri V, Guillen DG, Fabbricatore A. Metal functionally graded gyroids: additive manufacturing, mechanical properties, and simulation. Int J Adv Manuf Technol 2022. [DOI: 10.1007/s00170-022-10334-9] [Reference Citation Analysis]
15 Mochi F, Scatena E, Rodriguez D, Ginebra MP, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity 2022;8:45. [PMID: 36309540 DOI: 10.1038/s41526-022-00236-1] [Reference Citation Analysis]
16 Klimek K, Palka K, Truszkiewicz W, Douglas TEL, Nurzynska A, Ginalska G. Could Curdlan/Whey Protein Isolate/Hydroxyapatite Biomaterials Be Considered as Promising Bone Scaffolds?-Fabrication, Characterization, and Evaluation of Cytocompatibility towards Osteoblast Cells In Vitro. Cells 2022;11:3251. [PMID: 36291119 DOI: 10.3390/cells11203251] [Reference Citation Analysis]
17 Irfan D, Ahmad I, Patra I, Margiana R, Rasulova MT, Sivaraman R, Kandeel M, Mohammad HJ, Al-qaim ZH, Jawad MA, Mustafa YF, Ansari MJ. Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy 2022. [DOI: 10.1016/j.jcyt.2022.08.008] [Reference Citation Analysis]
18 Owida HA, Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan, Al-ayyad M, Rashid M, Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan, Civil Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan. Biomimetic tissue regeneration using electrospun nanofibrous scaffolds. JOBM 2022;14:169-186. [DOI: 10.15251/jobm.2022.144.169] [Reference Citation Analysis]
19 Leu Alexa R, Cucuruz A, Ghițulică C, Voicu G, Stamat (Balahura) L, Dinescu S, Vlasceanu GM, Iovu H, Serafim A, Ianchis R, Ciocan L, Costache M. 3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers. Nanomaterials 2022;12:3420. [DOI: 10.3390/nano12193420] [Reference Citation Analysis]
20 Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022;23:267. [PMID: 36163568 DOI: 10.1208/s12249-022-02419-1] [Reference Citation Analysis]
21 Subuki I, Nasir KNA, Ramlee NA. A Review on the Effect of Zein in Scaffold for Bone Tissue Engineering. JST 2022;30:2805-2829. [DOI: 10.47836/pjst.30.4.28] [Reference Citation Analysis]
22 Sangkert S, Meesane J, Kong X. Osteocyte Spheroids as a Live-Cell Additive Proposed as a Component in the Compounding of Biofabricated Materials for Engineered Bone Tissue: Formation and Biological Performance. J Med Biol Eng . [DOI: 10.1007/s40846-022-00751-2] [Reference Citation Analysis]
23 Ebrahimi M. Biodegradable Biomaterials in Bone Tissue Engineering. Biodegradable Materials and Their Applications 2022. [DOI: 10.1002/9781119905301.ch11] [Reference Citation Analysis]
24 Iqbal N, Braxton TM, Anastasiou A, Raif EM, Chung CKY, Kumar S, Giannoudis PV, Jha A. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. Materials 2022;15:6245. [DOI: 10.3390/ma15186245] [Reference Citation Analysis]
25 Sadykov R, Lytkina D, Stepanova K, Kurzina I. Synthesis of Biocompatible Composite Material Based on Cryogels of Polyvinyl Alcohol and Calcium Phosphates. Polymers (Basel) 2022;14:3420. [PMID: 36015677 DOI: 10.3390/polym14163420] [Reference Citation Analysis]
26 Kumar R, Mohanty S. Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02454-2] [Reference Citation Analysis]
27 Chen C, Xi Y, Weng Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022;14:3335. [DOI: 10.3390/polym14163335] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Samadi A, Salati MA, Safari A, Jouyandeh M, Barani M, Singh Chauhan NP, Golab EG, Zarrintaj P, Kar S, Seidi F, Hejna A, Saeb MR. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition 2022;33:1555-1594. [DOI: 10.1080/09205063.2022.2065409] [Reference Citation Analysis]
29 Oktay B, Ahlatcıoğlu Özerol E, Sahin A, Gunduz O, Ustundag CB. Production and Characterization of PLA/HA/GO Nanocomposite Scaffold. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200697] [Reference Citation Analysis]
30 Martinez JS, Peterson S, Hoel CA, Erno DJ, Murray T, Boyd L, Her J, Mclean N, Davis R, Ginty F, Duclos SJ, Davis BM, Parthasarathy G. High resolution DLP stereolithography to fabricate biocompatible hydroxyapatite structures that support osteogenesis. PLoS ONE 2022;17:e0272283. [DOI: 10.1371/journal.pone.0272283] [Reference Citation Analysis]
31 Aghajanpour S, Esfandyari-Manesh M, Ghahri T, Ghahremani MH, Atyabi F, Heydari M, Motasadizadeh H, Dinarvand R. Impact of oxygen-calcium-generating and bone morphogenetic protein-2 nanoparticles on survival and differentiation of bone marrow-derived mesenchymal stem cells in the 3D bio-printed scaffold. Colloids Surf B Biointerfaces 2022;216:112581. [PMID: 35617876 DOI: 10.1016/j.colsurfb.2022.112581] [Reference Citation Analysis]
32 Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022:S0141-8130(22)01572-0. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
33 Haag SL, Martinez‐alvarez J, Schiele NR, Bernards MT. Delivery of bioactive albumin from multi‐functional polyampholyte hydrogels. J of Applied Polymer Sci. [DOI: 10.1002/app.52846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Castillo-paz AM, Cañon-davila DF, Londoño-restrepo SM, Jimenez-mendoza D, Pfeiffer H, Ramírez-bon R, Rodriguez-garcia ME. Fabrication and characterization of bioinspired nanohydroxyapatite scaffolds with different porosities. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Yadav AK, Awasthi A, Saxena KK, Agrawal MK. Critical Review on 3D Scaffolds Materials. MSF 2022;1065:129-143. [DOI: 10.4028/p-c4c2s2] [Reference Citation Analysis]
36 Fallahiarezoudar E, Ngadiman NHA, Yusof NM, Idris A, Ishak MSA. Development of 3D Thermoplastic Polyurethane (TPU)/Maghemite (ϒ-Fe2O3) Using Ultra-Hard and Tough (UHT) Bio-Resin for Soft Tissue Engineering. Polymers 2022;14:2561. [DOI: 10.3390/polym14132561] [Reference Citation Analysis]
37 Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. J Mater Sci Mater Med 2022;33:55. [PMID: 35716227 DOI: 10.1007/s10856-022-06676-1] [Reference Citation Analysis]
38 Zhu Y, Zhang Y, Zhou Y. Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022;23:6574. [PMID: 35743019 DOI: 10.3390/ijms23126574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Atkinson I, Seciu-grama AM, Petrescu S, Culita D, Mocioiu OC, Voicescu M, Mitran R, Lincu D, Prelipcean A, Craciunescu O. Cerium-Containing Mesoporous Bioactive Glasses (MBGs)-Derived Scaffolds with Drug Delivery Capability for Potential Tissue Engineering Applications. Pharmaceutics 2022;14:1169. [DOI: 10.3390/pharmaceutics14061169] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. J Biomater Sci Polym Ed 2022;:1-55. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Averianov I, Stepanova M, Solomakha O, Gofman I, Serdobintsev M, Blum N, Kaftuirev A, Baulin I, Nashchekina J, Lavrentieva A, Vinogradova T, Korzhikov-Vlakh V, Korzhikova-Vlakh E. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35618683 DOI: 10.1002/jbm.b.35100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Gryko A, Prochor P, Sajewicz E. Finite element analysis of the influence of porosity and pore geometry on mechanical properties of orthopaedic scaffolds. J Mech Behav Biomed Mater 2022;132:105275. [PMID: 35623106 DOI: 10.1016/j.jmbbm.2022.105275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Roshanfar F, Hesaraki S, Dolatshahi-Pirouz A. Electrospun Silk Fibroin/kappa-Carrageenan Hybrid Nanofibers with Enhanced Osteogenic Properties for Bone Regeneration Applications. Biology (Basel) 2022;11:751. [PMID: 35625479 DOI: 10.3390/biology11050751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Abouzeid RE, Abd El-kader AH, Salama A, Fahmy TYA, El-sakhawy M; National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt, National Research Centre, Cellulose and Paper Department, Dokki 12622, Egypt. PREPARATION AND PROPERTIES OF NOVEL BIOCOMPATIBLE PECTIN/SILICA CALCIUM PHOSPHATE HYBRIDS. Cellulose Chem Technol 2022;56:371-8. [DOI: 10.35812/cellulosechemtechnol.2022.56.33] [Reference Citation Analysis]
45 Winnett J, Jumbu N, Cox S, Gibbons G, Grover LM, Warnett J, Williams MA, Dancer CE, Mallick KK. In-vitro viability of bone scaffolds fabricated using the adaptive foam reticulation technique. Biomaterials Advances 2022;136:212766. [DOI: 10.1016/j.bioadv.2022.212766] [Reference Citation Analysis]
46 Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Cavalcante MDP, de Menezes LR, Rodrigues EJDR, Tavares MIB. In vitro characterization of a biocompatible composite based on poly(3-hydroxybutyrate)/hydroxyapatite nanoparticles as a potential scaffold for tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials 2022;128:105138. [DOI: 10.1016/j.jmbbm.2022.105138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Moris H, Ghaee A, Karimi M, Nouri-felekori M, Mashak A. Preparation and characterization of Pullulan-based nanocomposite scaffold incorporating Ag-Silica Janus particles for bone tissue engineering. Biomaterials Advances 2022;135:212733. [DOI: 10.1016/j.bioadv.2022.212733] [Reference Citation Analysis]
49 Alamán-Díez P, García-Gareta E, Napal PF, Arruebo M, Pérez MÁ. In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. Materials (Basel) 2022;15:2572. [PMID: 35407903 DOI: 10.3390/ma15072572] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Li Z, Wang Q, Liu G. A Review of 3D Printed Bone Implants. Micromachines 2022;13:528. [DOI: 10.3390/mi13040528] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
51 Bee SL, Hamid ZAA. Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35322931 DOI: 10.1002/jbm.b.35060] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Wang R, Che L, Feng Q, Cai K. Tough, Flexible, and Bioactive Amphoteric Copolymer-Based Hydrogel for Bone Regeneration without Encapsulation of Seed Cells/Simulating Cues. ACS Appl Mater Interfaces 2022;14:12038-49. [PMID: 35238538 DOI: 10.1021/acsami.1c23017] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Kodali D, Hembrick-Holloman V, Gunturu DR, Samuel T, Jeelani S, Rangari VK. Influence of Fish Scale-Based Hydroxyapatite on Forcespun Polycaprolactone Fiber Scaffolds. ACS Omega 2022;7:8323-35. [PMID: 35309494 DOI: 10.1021/acsomega.1c05593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Barbosa F, Ferreira FC, Silva JC. Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. Int J Mol Sci 2022;23:2907. [PMID: 35328328 DOI: 10.3390/ijms23062907] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Bar JK, Kowalczyk T, Grelewski PG, Stamnitz S, Paprocka M, Lis J, Lis-Nawara A, An S, Klimczak A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold. Materials (Basel) 2022;15:1900. [PMID: 35269131 DOI: 10.3390/ma15051900] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Zakeri N, Rezaie HR, Javadpour J, Kharaziha M. Cisplatin loaded polycaprolactone – Zeolite nanocomposite scaffolds for bone cancer treatment. Journal of Science: Advanced Materials and Devices 2022;7:100377. [DOI: 10.1016/j.jsamd.2021.06.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Possolli NM, Raupp-pereira F, Klegues Montedo OR, Arcaro S. LZS bioactive glass-ceramic scaffolds: Colloidal processing, foam replication technique and mechanical properties to bone tissue engineering. Open Ceramics 2022;9:100219. [DOI: 10.1016/j.oceram.2022.100219] [Reference Citation Analysis]
58 Jain S, Gujjala R, Abdul Azeem P, Ojha S, Samudrala RK. A review on mechanical and In-vitro studies of polymer reinforced bioactive glass-scaffolds and their fabrication techniques. Ceramics International 2022;48:5908-21. [DOI: 10.1016/j.ceramint.2021.11.206] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
59 Fernandes DS, Jayme CC, Tedesco AC. Biopolymer‐Based Scaffolds for Bone and Tissue Engineering. Nanoengineering of Biomaterials 2022. [DOI: 10.1002/9783527832095.ch19] [Reference Citation Analysis]
60 Owida HA, Al-nabulsi JI, Alnaimat F, Al-ayyad M, Turab NM, Al Sharah A, Shakur M, Merodio J. Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Applied Bionics and Biomechanics 2022;2022:1-15. [DOI: 10.1155/2022/1953861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
61 Chou P, Lee D, Weng C, Wu R, Liao C, Liu S. Bone Morphogenetic Protein-, Antimicrobial Agent-, and Analgesic-Incorporated Nanofibrous Scaffolds for the Therapy of Alveolar Clefts. Pharmaceutics 2022;14:374. [DOI: 10.3390/pharmaceutics14020374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Asami J, Hausen MA, Komatsu D, Ferreira LM, Silva GBG, da Silva LCSC, Baldo DA, Oliveira Junior JM, Motta AC, Duek EAR. Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) 3D printed scaffold cultivated with mesenchymal stem cells directed to bone reconstruction: In vitro and in vivo studies. J Biomater Appl 2022;:8853282211066246. [PMID: 35130780 DOI: 10.1177/08853282211066246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Zeng X, Wang L, Chen X, Luo K, Li J. 3D biocompatible bone engineering foams with tunable mechanical properties and porous structures. J of Applied Polymer Sci. [DOI: 10.1002/app.52228] [Reference Citation Analysis]
64 Hassani A, Khoshfetrat AB, Rahbarghazi R, Sakai S. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation. Carbohydr Polym 2022;277:118807. [PMID: 34893227 DOI: 10.1016/j.carbpol.2021.118807] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
65 Torres P, Ribeiro N, Nunes C, Rodrigues A, Sousa A, Olhero S. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112690] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Li D, Li P, Xu Y, Guo W, Li M, Chen M, Wang H, Lin H, Yi DK. Progress in Montmorillonite Functionalized Artificial Bone Scaffolds: Intercalation and Interlocking, Nanoenhancement, and Controlled Drug Release. Journal of Nanomaterials 2022;2022:1-20. [DOI: 10.1155/2022/7900382] [Reference Citation Analysis]
67 Derwich M, Lassmann L, Machut K, Zoltowska A, Pawlowska E. General Characteristics, Biomedical and Dental Application, and Usage of Chitosan in the Treatment of Temporomandibular Joint Disorders: A Narrative Review. Pharmaceutics 2022;14:305. [DOI: 10.3390/pharmaceutics14020305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
68 Adel IM, Elmeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022;14:306. [DOI: 10.3390/pharmaceutics14020306] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
69 Eldeeb AE, Salah S, Mabrouk M, Amer MS, Elkasabgy NA. Dual-Drug Delivery via Zein In Situ Forming Implants Augmented with Titanium-Doped Bioactive Glass for Bone Regeneration: Preparation, In Vitro Characterization, and In Vivo Evaluation. Pharmaceutics 2022;14:274. [DOI: 10.3390/pharmaceutics14020274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
70 Bełdowski P, Przybyłek M, Sionkowska A, Cysewski P, Gadomska M, Musiał K, Gadomski A. Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study. Materials (Basel) 2022;15:463. [PMID: 35057179 DOI: 10.3390/ma15020463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
71 Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 2022;16. [DOI: 10.1186/s13036-021-00282-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
72 Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022;:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 Ghelich P, Kazemzadeh-narbat M, Hassani Najafabadi A, Samandari M, Memić A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with an Emphasis on US‐FDA Regulatory Science Perspective. Advanced NanoBiomed Research. [DOI: 10.1002/anbr.202100073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Parivatphun T, Sangkert S, Kokoo R, Khangkhamano M, Meesane J. Biphasic scaffolds of polyvinyl alcohol with silk fibroin for oral and maxillofacial surgery based on mimicking materials design: fabrication, characterization, properties. J Mater Sci 2022;57:2131-48. [DOI: 10.1007/s10853-021-06718-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Kholghi Eshkalak S, Kowsari E, Ramakrishna S. 3D printing of graphene-based composites and their applications in medicine and health care. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00011-x] [Reference Citation Analysis]
76 Abdelgawad M, Elkodous MA, El Rouby WMA. Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_45-1] [Reference Citation Analysis]
77 Chummun I, Ramphul H, Jhurry D, Bhaw-luximon A. Bionanomaterials for wound healing applications. Bionanotechnology : Emerging Applications of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-823915-5.00010-1] [Reference Citation Analysis]
78 Ursino HL, James BD, Ludtka CM, Allen JB. Bone tissue engineering. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00018-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Radwan IA, Rady D, El Moshy S, Abbass MMS, Sadek KM, El-rashidy AA, Ezz El-arab A, Fawzy El-sayed KM. Current Trends and Future Outlooks of Dental Stem-Cell-Derived Secretome/Conditioned Medium in Regenerative Medicine. Handbook of Stem Cell Therapy 2022. [DOI: 10.1007/978-981-16-6016-0_47-1] [Reference Citation Analysis]
80 Radhakrishnan A, Sreekumaran S, Anjali S, Resmi R, Saravana RP. Emerging strategies in bone tissue engineering. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00013-7] [Reference Citation Analysis]
81 Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/5584_2022_706] [Reference Citation Analysis]
82 Grassie K, Khan Y. Bone tissue engineering. Musculoskeletal Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-823893-6.00002-4] [Reference Citation Analysis]
83 Tajurahim NAN, the Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, KM 1 Jalan Panchor, 84600 Pagoh, Johor and School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia, Mahmood S, Saman MZM, Ngadiman NHA. Carbon Footprint of 3D-Printed Bone Tissue Engineering Scaffolds: An Life Cycle Assessment Study. IJESD 2022;13:63-69. [DOI: 10.18178/ijesd.2022.13.3.1373] [Reference Citation Analysis]
84 Radwan IA, Rady D, El Moshy S, Abbass MMS, Sadek KM, El-rashidy AA, Ezz El-arab A, Fawzy El-sayed KM. Current Trends and Future Outlooks of Dental Stem-Cell-Derived Secretome/Conditioned Medium in Regenerative Medicine. Handbook of Stem Cell Therapy 2022. [DOI: 10.1007/978-981-19-2655-6_47] [Reference Citation Analysis]
85 Gnanavel S, Kaavya P. Design and development of novel 3D bone scaffold for implant application. Materials Today: Proceedings 2022;59:775-780. [DOI: 10.1016/j.matpr.2021.12.580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Pietrzykowska E, Romelczyk-Baishya B, Chodara A, Koltsov I, Smogór H, Mizeracki J, Pakieła Z, Łojkowski W. Microstructure and Mechanical Properties of Inverse Nanocomposite Made from Polylactide and Hydroxyapatite Nanoparticles. Materials (Basel) 2021;15:184. [PMID: 35009328 DOI: 10.3390/ma15010184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 Cedeño-viveros LD, Rodriguez CA, Segura-ibarra V, Vázquez E, García-lópez E. Characterization of Porous Scaffolds Fabricated by Joining Stacking Based Laser Micro-Spot Welding (JS-LMSW) for Tissue Engineering Applications. Materials 2021;15:99. [DOI: 10.3390/ma15010099] [Reference Citation Analysis]
88 Dixon DT, Gomillion CT. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater 2021;13:1. [PMID: 35076518 DOI: 10.3390/jfb13010001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
89 Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. Sci Total Environ 2021;801:149809. [PMID: 34467935 DOI: 10.1016/j.scitotenv.2021.149809] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
90 Nilawar S, Chatterjee K. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomacromolecules 2021. [PMID: 34905351 DOI: 10.1021/acs.biomac.1c01235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
91 Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021;7:5397-431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
92 Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021;179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
93 Bezdieniezhnykh N, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine, Holiuk Y, Gerasymenko S, Saulenko K, Mayko V, Lykhova O, State Institute of Traumatology and Orthopedics, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, State Institute of Traumatology and Orthopedics, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, State Institute of Traumatology and Orthopedics, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, M. I. Pyrogov Vinnytsia Regional Clinical Hospital, Vinnytsia , Ukraine, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine. Evaluation of in vitro biocompatibility of scaffolds for the repair of bone defects. COT 2021;9. [DOI: 10.22494/cot.v9i2.128] [Reference Citation Analysis]
94 Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research 2022;2:2100116. [DOI: 10.1002/anbr.202100116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
96 Tharakan S, Khondkar S, Ilyas A. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering. Sensors (Basel) 2021;21:7477. [PMID: 34833553 DOI: 10.3390/s21227477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
97 Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13:3825. [PMID: 34771382 DOI: 10.3390/polym13213825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
98 Moe YM, Nuntanaranont T, Khangkhamano M, Meesane J. Mimicked Periosteum Layer Based on Deposited Particle Silk Fibroin Membrane for Osteogenesis and Guided Bone Regeneration in Alveolar Cleft Surgery: Formation and in Vitro Testing. Organogenesis 2021;:1-17. [PMID: 34719332 DOI: 10.1080/15476278.2021.1991743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Yazdanian M, Arefi AH, Alam M, Abbasi K, Tebyaniyan H, Tahmasebi E, Ranjbar R, Seifalian A, Rahbar M. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview. Journal of Materials Research and Technology 2021;15:1217-51. [DOI: 10.1016/j.jmrt.2021.08.083] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
100 Wang X, Nie Z, Chang J, Lu ML, Kang Y. Multiple channels with interconnected pores in a bioceramic scaffold promote bone tissue formation. Sci Rep 2021;11:20447. [PMID: 34650074 DOI: 10.1038/s41598-021-00024-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
101 Egorikhina MN, Bronnikova II, Rubtsova YP, Charykova IN, Bugrova ML, Linkova DD, Aleynik DY. Aspects of In Vitro Biodegradation of Hybrid Fibrin-Collagen Scaffolds. Polymers (Basel) 2021;13:3470. [PMID: 34685229 DOI: 10.3390/polym13203470] [Reference Citation Analysis]
102 Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M, Suzuki S, Handa K, Saito M. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells 2021;10:2687. [PMID: 34685667 DOI: 10.3390/cells10102687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
103 Liu C, Yang H, Shen NA, Li J, Chen Y, Wang JY. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement. Biomed Mater 2021;16. [PMID: 34517347 DOI: 10.1088/1748-605X/ac265d] [Reference Citation Analysis]
104 Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021;19:551. [PMID: 34677450 DOI: 10.3390/md19100551] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
105 Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci 2021;22:10233. [PMID: 34638571 DOI: 10.3390/ijms221910233] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
106 Kadhim IAU. Biocompatibility of Alginate -Graphene Oxide Film for Tissue Engineering Applications. KEM 2021;900:26-33. [DOI: 10.4028/www.scientific.net/kem.900.26] [Reference Citation Analysis]
107 Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;128:112287. [PMID: 34474838 DOI: 10.1016/j.msec.2021.112287] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
108 Maleki-Ghaleh H, Siadati MH, Fallah A, Koc B, Kavanlouei M, Khademi-Azandehi P, Moradpur-Tari E, Omidi Y, Barar J, Beygi-Khosrowshahi Y, Kumar AP, Adibkia K. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. Int J Mol Sci 2021;22:9564. [PMID: 34502473 DOI: 10.3390/ijms22179564] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
109 Ma P, Wu W, Wei Y, Ren L, Lin S, Wu J. Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering. Materials & Design 2021;207:109865. [DOI: 10.1016/j.matdes.2021.109865] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
110 Lavanya P, Vijayakumari N. Copper and manganese substituted hydroxyapatite/chitosan–polyvinyl pyrrolidone biocomposite for biomedical applications. Bull Mater Sci 2021;44:222. [DOI: 10.1007/s12034-021-02511-5] [Reference Citation Analysis]
111 Shirbhate NR, Bokade S. Aids of Machine Learning for Additively Manufactured Bone Scaffold. Emerging Technologies for Healthcare 2021. [DOI: 10.1002/9781119792345.ch15] [Reference Citation Analysis]
112 Chocholata P, Kulda V, Dvorakova J, Supova M, Zaloudkova M, Babuska V. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Int J Mol Sci 2021;22:9335. [PMID: 34502243 DOI: 10.3390/ijms22179335] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
113 Elkhouly H, Mamdouh W, El-Korashy DI. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. J Mater Sci Mater Med 2021;32:111. [PMID: 34453628 DOI: 10.1007/s10856-021-06588-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
114 Rogulska OY, Trufanova NA, Petrenko YA, Repin NV, Grischuk VP, Ashukina NO, Bondarenko SY, Ivanov GV, Podorozhko EA, Lozinsky VI, Petrenko AY. Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34387944 DOI: 10.1002/jbm.b.34927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Rasheed S, Lughmani W, Obeidi M, Brabazon D, Ahad I. Additive Manufacturing of Bone Scaffolds Using PolyJet and Stereolithography Techniques. Applied Sciences 2021;11:7336. [DOI: 10.3390/app11167336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
116 Maia MT, Soares ALDB, Caetano MA, Andrade FK, Rodríguez-castellón E, Vieira RS. Biomimetic Strontium Substituted Calcium Phosphate Coating for Bone Regeneration. Coatings 2021;11:908. [DOI: 10.3390/coatings11080908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
117 Bicho D, Canadas RF, Gonçalves C, Pina S, Reis RL, Oliveira JM. Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. J Biomater Sci Polym Ed 2021;:1-17. [PMID: 34228590 DOI: 10.1080/09205063.2021.1952382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
118 Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021;9:661802. [PMID: 34327197 DOI: 10.3389/fcell.2021.661802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
119 Rahyussalim AJ, Sahputra RE, Yanwirasti, Manjas M, Whulanza Y, Kurniawati T, Aprilya D, Zufar MLL. The Effect of Mesenchymal Stem Cell-Enriched Scaffolds on MMP-8 and TGF-β Levels of Vertebrae Postlaminoplasty in Rabbit Model. Stem Cells Cloning 2021;14:27-37. [PMID: 34285511 DOI: 10.2147/SCCAA.S314107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Bouhlouli M, Pourhadi M, Karami F, Talebi Z, Ranjbari J, Khojasteh A. Applications of Bacterial Cellulose as a Natural Polymer in Tissue Engineering. ASAIO J 2021;67:709-20. [PMID: 33709986 DOI: 10.1097/MAT.0000000000001356] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
121 Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021;269:118351. [PMID: 34294355 DOI: 10.1016/j.carbpol.2021.118351] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
122 Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021;26:333-66. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
123 Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021;22:6387. [PMID: 34203719 DOI: 10.3390/ijms22126387] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
124 Blázquez-Carmona P, Sanz-Herrera JA, Martínez-Vázquez FJ, Domínguez J, Reina-Romo E. Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. J Mech Behav Biomed Mater 2021;121:104613. [PMID: 34126507 DOI: 10.1016/j.jmbbm.2021.104613] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
125 Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021;8:682581. [PMID: 34169095 DOI: 10.3389/fmolb.2021.682581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
126 Hazwani F, Todo M. Characterization of bending behavior of hydroxyapatite/biopolymer porous composite beams. Composites Communications 2021;25:100747. [DOI: 10.1016/j.coco.2021.100747] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Tripathi Y, Shukla M, Bhatt AD. Idealization through interactive modeling and experimental assessment of 3D-printed gyroid for trabecular bone scaffold. Proc Inst Mech Eng H 2021;:9544119211022988. [PMID: 34058889 DOI: 10.1177/09544119211022988] [Reference Citation Analysis]
128 Kramer S, Cameron NR, Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers (Basel) 2021;13:1786. [PMID: 34071683 DOI: 10.3390/polym13111786] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
129 Huang GJ, Yu HP, Wang XL, Ning BB, Gao J, Shi YQ, Zhu YJ, Duan JL. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. J Mater Chem B 2021;9:1277-87. [PMID: 33439203 DOI: 10.1039/d0tb02288h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
130 Nahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi-barough S. In vivo investigation of PCL/PHBV/Hydroxyapatite Nanocomposite Scaffold in Regeneration of Critical-sized Bone Defects. Fibers Polym 2021;22:2507-16. [DOI: 10.1007/s12221-021-1243-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
131 Mancuso E, Shah L, Jindal S, Serenelli C, Tsikriteas ZM, Khanbareh H, Tirella A. Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2021;126:112192. [PMID: 34082989 DOI: 10.1016/j.msec.2021.112192] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
132 Gugliandolo A, Fonticoli L, Trubiani O, Rajan TS, Marconi GD, Bramanti P, Mazzon E, Pizzicannella J, Diomede F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021;22:5236. [PMID: 34063438 DOI: 10.3390/ijms22105236] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
133 Abazari MF, Zare Karizi S, Hajati‐birgani N, Kohandani M, Torabinejad S, Nejati F, Nasiri N, Maleki MH, Mohajerani H, Mansouri V. Curcumin‐loaded PHB / PLLA nanofibrous scaffold supports osteogenesis in adipose‐derived stem cells in vitro. Polym Adv Technol 2021;32:3563-71. [DOI: 10.1002/pat.5366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
134 Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Adv NanoBio Res 2021;1:2000088. [DOI: 10.1002/anbr.202000088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
135 Castillo-paz AM, Londoño-restrepo SM, Ortiz-echeverri C, Ramirez-bon R, Rodriguez-garcía ME. Physicochemical properties of 3D bovine natural scaffolds as a function of the anterior-posterior, lateral and superior-inferior directions. Materialia 2021;16:101100. [DOI: 10.1016/j.mtla.2021.101100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
136 Wiatrak B, Sobierajska P, Szandruk-Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ. Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage-In Vitro Study. Int J Mol Sci 2021;22:4454. [PMID: 33923239 DOI: 10.3390/ijms22094454] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
137 Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials (Basel) 2021;14:2096. [PMID: 33919199 DOI: 10.3390/ma14092096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
138 Kalisz G, Przekora A, Kazimierczak P, Gieroba B, Lewalska-Graczyk A, Pieta IS, Holdynski M, Ginalska G, Sroka-Bartnicka A. Physicochemical changes of the chitosan/β-1,3-glucan/hydroxyapatite biocomposite caused by mesenchymal stem cells cultured on its surface in vitro. Spectrochim Acta A Mol Biomol Spectrosc 2021;251:119439. [PMID: 33461139 DOI: 10.1016/j.saa.2021.119439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021;9:647007. [PMID: 33898403 DOI: 10.3389/fbioe.2021.647007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
140 Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Progress in Materials Science 2021;117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Cited by in Crossref: 157] [Cited by in F6Publishing: 172] [Article Influence: 157.0] [Reference Citation Analysis]
141 Babayevska N, Woźniak-Budych M, Litowczenko J, Peplińska B, Jarek M, Florczak P, Bartkowiak G, Czarnecka B, Jurga S. Novel nanosystems to enhance biological activity of hydroxyapatite against dental caries. Mater Sci Eng C Mater Biol Appl 2021;124:112062. [PMID: 33947556 DOI: 10.1016/j.msec.2021.112062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
142 Kikionis S, Ioannou E, Aggelidou E, Tziveleka LA, Demiri E, Bakopoulou A, Zinelis S, Kritis A, Roussis V. The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Int J Mol Sci 2021;22:3086. [PMID: 33802984 DOI: 10.3390/ijms22063086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
143 Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J Biomed Mater Res A 2021;109:1765-75. [PMID: 33733598 DOI: 10.1002/jbm.a.37170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
144 Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021;123:123-53. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
145 Maia MT, Luz ÉPCG, Andrade FK, Rosa MDF, Borges MDF, Arcanjo MRA, Vieira RS. Advances in Bacterial Cellulose/Strontium Apatite Composites for Bone Applications. Polymer Reviews 2021;61:736-64. [DOI: 10.1080/15583724.2021.1896543] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
146 Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv Funct Mater 2021;31:2010609. [DOI: 10.1002/adfm.202010609] [Cited by in Crossref: 110] [Cited by in F6Publishing: 115] [Article Influence: 110.0] [Reference Citation Analysis]
147 Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. Micromachines (Basel) 2021;12:287. [PMID: 33800485 DOI: 10.3390/mi12030287] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
148 Caiazzo F, Alfieri V, Bujazha BD. Additive manufacturing of biomorphic scaffolds for bone tissue engineering. Int J Adv Manuf Technol 2021;113:2909-23. [DOI: 10.1007/s00170-021-06773-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
149 Manzini BM, Machado LMR, Noritomi PY, da Silva JVL. Advances in Bone tissue engineering: A fundamental review. J Biosci 2021;46. [DOI: 10.1007/s12038-020-00122-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
150 Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021;9:630488. [PMID: 33614614 DOI: 10.3389/fbioe.2021.630488] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
151 Kanniyappan H, Venkatesan M, Panji J, Ramasamy M, Muthuvijayan V. Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to augment vascularized bone tissue formation. Microporous and Mesoporous Materials 2021;311:110687. [DOI: 10.1016/j.micromeso.2020.110687] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
152 Pita-lópez ML, Fletes-vargas G, Espinosa-andrews H, Rodríguez-rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal 2021;145:110176. [DOI: 10.1016/j.eurpolymj.2020.110176] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 46.0] [Reference Citation Analysis]
153 Wu K, Chen YC, Lin SM, Chang CH. In vitro and in vivo effectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl 2021;35:1355-65. [PMID: 33522363 DOI: 10.1177/0885328221989984] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021;22:E903. [PMID: 33477502 DOI: 10.3390/ijms22020903] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 31.0] [Reference Citation Analysis]
155 Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2020;8:614545. [PMID: 33520992 DOI: 10.3389/fcell.2020.614545] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 19.0] [Reference Citation Analysis]
156 Kalisz G, Przekora A, Kazimierczak P, Gieroba B, Jedrek M, Grudzinski W, Gruszecki WI, Ginalska G, Sroka-Bartnicka A. Application of Raman Spectroscopic Imaging to Assess the Structural Changes at Cell-Scaffold Interface. Int J Mol Sci 2021;22:E485. [PMID: 33418952 DOI: 10.3390/ijms22020485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
157 Tabatabaei Mirakabad FS, Hosseinzadeh S, Abbaszadeh HA, Zeighamian V, Khoramgah MS, Ghanbarian H, Ranjbari J, Kazemi B. Optimization of Topography and Surface Properties of Polyacrylonitrile-Based Electrospun Scaffolds via Nonoclay Concentrations and its Effect on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Iran J Pharm Res 2021;20:385-504. [PMID: 35194454 DOI: 10.22037/ijpr.2021.115119.15208] [Reference Citation Analysis]
158 Soeiro VS, Tundisi LL, Amaral VA, Batain F, Mazzola PG, Tambourgi EB, Oliveira Júnior JMD, Chaud MV, Grotto D, Aranha N, Jozala AF. Bacterial nanocellulose and fibroin: natural products to produce a structure membranes. Matéria (Rio J ) 2021;26. [DOI: 10.1590/s1517-707620210004.1386] [Reference Citation Analysis]
159 Peranidze KK, Safronova T, Kil’deeva N, Chernogortseva M, Selezneva I, Shatalova T, Rau J. Biocompatible composite films and fibers based on Poly(Vinyl alcohol) and powders of calcium salts. Smart Materials in Medicine 2021;2:292-301. [DOI: 10.1016/j.smaim.2021.08.002] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Strasser V, Dutour Sikirić M. Bone Regeneration With Ceramics Scaffold. Encyclopedia of Materials: Technical Ceramics and Glasses 2021. [DOI: 10.1016/b978-0-12-818542-1.00031-x] [Reference Citation Analysis]
161 Hassan NU, Chaudhery I, ur.Rehman A, Ahmed N. Polymeric nanoparticles used in tissue engineering. Advances in Polymeric Nanomaterials for Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-814657-6.00005-7] [Reference Citation Analysis]
162 Qian J, Lin Z, Liu Y, Wang Z, Lin Y, Gong C, Ruan R, Zhang J, Yang H. Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine 2021;2:260-79. [DOI: 10.1016/j.smaim.2021.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
163 Sheoran AJ, Chandra A, Kumar H. Biomedical Applications of Additive Manufacturing. Lecture Notes in Mechanical Engineering 2021. [DOI: 10.1007/978-981-15-8704-7_68] [Reference Citation Analysis]
164 Saraiva AS, Ribeiro IA, Fernandes MH, Cerdeira AC, Vieira BJ, Waerenborgh JC, Pereira LC, Cláudio R, Carmezim MJ, Gomes P, Gonçalves LM, Santos CF, Bettencourt AF. 3D-printed platform multi-loaded with bioactive, magnetic nanoparticles and an antibiotic for re-growing bone tissue. International Journal of Pharmaceutics 2021;593:120097. [DOI: 10.1016/j.ijpharm.2020.120097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
165 Sidharthan DS, Abhinandan R, Adithya SP, Balagangadharan K, Selvamurugan N. Chitosan and Its Potential Use for the Delivery of Bioactive Molecules in Bone Tissue Engineering. Advances in Polymer Science 2021. [DOI: 10.1007/12_2021_99] [Reference Citation Analysis]
166 Saraswathy M, Krishnaswami V, Ragini DD. Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications. Biomaterials in Tissue Engineering and Regenerative Medicine 2021. [DOI: 10.1007/978-981-16-0002-9_10] [Reference Citation Analysis]
167 Jose M, Rajagopal V, Thankam FG. Oral tissue regeneration: Current status and future perspectives. Regenerated Organs 2021. [DOI: 10.1016/b978-0-12-821085-7.00009-9] [Reference Citation Analysis]
168 Prochor P, Gryko A. Numerical Analysis of the Influence of Porosity and Pore Geometry on Functionality of Scaffolds Designated for Orthopedic Regenerative Medicine. Materials (Basel) 2020;14:E109. [PMID: 33383866 DOI: 10.3390/ma14010109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
169 Xu X, Song J, Xx, Js. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds. Biomater Transl 2020;1:33-45. [PMID: 35837653 DOI: 10.3877/cma.j.issn.2096-112X.2020.01.004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
170 Linder HR, Glass AA, Day DE, Sell SA. Manipulating Air-Gap Electrospinning to Create Aligned Polymer Nanofiber-Wrapped Glass Microfibers for Cortical Bone Tissue Engineering. Bioengineering (Basel) 2020;7:165. [PMID: 33419239 DOI: 10.3390/bioengineering7040165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
171 Opris H, Dinu C, Baciut M, Baciut G, Mitre I, Crisan B, Armencea G, Prodan DA, Bran S. The Influence of Eggshell on Bone Regeneration in Preclinical In Vivo Studies. Biology (Basel) 2020;9:E476. [PMID: 33352877 DOI: 10.3390/biology9120476] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
172 Li N, Bai B, Zhang H, Zhang W, Tang S. Adipose stem cell secretion combined with biomaterials facilitates large-area wound healing. Regen Med 2020;15:2311-23. [PMID: 33320721 DOI: 10.2217/rme-2020-0086] [Reference Citation Analysis]
173 Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020;9:E4008. [PMID: 33322447 DOI: 10.3390/jcm9124008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
174 Chow T, Wutami I, Lucarelli E, Choong PF, Duchi S, Di Bella C. Creating In Vitro Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. Tissue Eng Part B Rev 2020. [PMID: 33138724 DOI: 10.1089/ten.TEB.2020.0254] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
175 Öfkeli F, Demir D, Bölgen N. Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. J Appl Polym Sci 2021;138:50337. [DOI: 10.1002/app.50337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
176 Ghaffari-bohlouli P, Zahedi P, Shahrousvand M. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. International Journal of Biological Macromolecules 2020;165:2363-77. [DOI: 10.1016/j.ijbiomac.2020.10.078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
177 Loordhuswamy A, Thinakaran S, Venkateshwapuram Rangaswamy GD. Centrifugal spun osteoconductive ultrafine fibrous mat as a scaffold for bone regeneration. Journal of Drug Delivery Science and Technology 2020;60:101978. [DOI: 10.1016/j.jddst.2020.101978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
178 Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 2020;20:e00093. [DOI: 10.1016/j.bprint.2020.e00093] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
179 Nejati S, Karimi Soflou R, Khorshidi S, Karkhaneh A. Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Colloids and Surfaces B: Biointerfaces 2020;196:111347. [DOI: 10.1016/j.colsurfb.2020.111347] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
180 Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020;12:E2858. [PMID: 33260490 DOI: 10.3390/polym12122858] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
181 Melčová V, Svoradová K, Menčík P, Kontárová S, Rampichová M, Hedvičáková V, Sovková V, Přikryl R, Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers (Basel) 2020;12:E2806. [PMID: 33260879 DOI: 10.3390/polym12122806] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
182 Fattahi F. Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. Int Nano Lett 2021;11:1-23. [DOI: 10.1007/s40089-020-00318-6] [Reference Citation Analysis]
183 Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. Materials (Basel) 2020;13:E5303. [PMID: 33238625 DOI: 10.3390/ma13225303] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
184 Barbosa JS, Mendes RF, Figueira F, Gaspar VM, Mano JF, Braga SS, Rocha J, Almeida Paz FA. Bone Tissue Disorders: Healing Through Coordination Chemistry. Chem Eur J 2020;26:15416-37. [DOI: 10.1002/chem.202004529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
185 Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020;8:553529. [PMID: 33178669 DOI: 10.3389/fbioe.2020.553529] [Reference Citation Analysis]
186 Armentia SL, Real JCD, Paz E, Dunne N. Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration. Materials (Basel) 2020;13:E5083. [PMID: 33187218 DOI: 10.3390/ma13225083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
187 Farzam Rad V, Panahi M, Jamali R, Darudi A, Moradi AR. Non-invasive in situ monitoring of bone scaffold activity by speckle pattern analysis. Biomed Opt Express 2020;11:6324-36. [PMID: 33282493 DOI: 10.1364/BOE.401740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
188 Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020;25:E4802. [PMID: 33086674 DOI: 10.3390/molecules25204802] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
189 Gieroba B, Przekora A, Kalisz G, Kazimierczak P, Song CL, Wojcik M, Ginalska G, Kazarian SG, Sroka-Bartnicka A. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater Sci Eng C Mater Biol Appl 2021;119:111634. [PMID: 33321672 DOI: 10.1016/j.msec.2020.111634] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
190 Abbasi N, Lee RSB, Ivanovski S, Love RM, Hamlet S. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater Res 2020;24:17. [PMID: 33014414 DOI: 10.1186/s40824-020-00196-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
191 Zhai M, Zhu Y, Yang M, Mao C. Human Mesenchymal Stem Cell Derived Exosomes Enhance Cell-Free Bone Regeneration by Altering Their miRNAs Profiles. Adv Sci (Weinh) 2020;7:2001334. [PMID: 33042751 DOI: 10.1002/advs.202001334] [Cited by in Crossref: 58] [Cited by in F6Publishing: 68] [Article Influence: 29.0] [Reference Citation Analysis]
192 Kumar P, Dehiya BS, Sindhu A, Kumar R, Pruncu CI, Yadav A. Fabrication and characterization of silver nanorods incorporated calcium silicate scaffold using polymeric sponge replica technique. Materials & Design 2020;195:109026. [DOI: 10.1016/j.matdes.2020.109026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
193 Kheiri Mollaqasem V, Asefnejad A, Nourani MR, Goodarzi V, Kalaee MR. Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core‐shell nanofibers as bone tissue scaffold. J Appl Polym Sci 2021;138:49797. [DOI: 10.1002/app.49797] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
194 Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12(9): 897-921 [PMID: 33033554 DOI: 10.4252/wjsc.v12.i9.897] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
195 Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Immobilization of BMP-2 and VEGF within Multilayered Polydopamine-Coated Scaffolds and the Resulting Osteogenic and Angiogenic Synergy of Co-Cultured Human Mesenchymal Stem Cells and Human Endothelial Progenitor Cells. Int J Mol Sci 2020;21:E6418. [PMID: 32899269 DOI: 10.3390/ijms21176418] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
196 Jang HY, Shin JY, Oh SH, Byun JH, Lee JH. PCL/HA Hybrid Microspheres for Effective Osteogenic Differentiation and Bone Regeneration. ACS Biomater Sci Eng 2020;6:5172-80. [PMID: 33455267 DOI: 10.1021/acsbiomaterials.0c00550] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
197 Tahmasebi E, Alam M, Yazdanian M, Tebyanian H, Yazdanian A, Seifalian A, Mosaddad SA. Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials. Journal of Materials Research and Technology 2020;9:11731-55. [DOI: 10.1016/j.jmrt.2020.08.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
198 Wang Y, Cao X, Ma M, Lu W, Zhang B, Guo Y. A GelMA-PEGDA-nHA Composite Hydrogel for Bone Tissue Engineering. Materials (Basel) 2020;13:E3735. [PMID: 32847000 DOI: 10.3390/ma13173735] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
199 Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020;15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
200 Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, Scotto d'Abusco A, Scoppio A, Piozzi A. Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. Materials (Basel) 2020;13:E3577. [PMID: 32823636 DOI: 10.3390/ma13163577] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
201 Chocholata P, Kulda V, Dvorakova J, Kolaja Dobra J, Babuska V. Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int J Mol Sci 2020;21:E5719. [PMID: 32784986 DOI: 10.3390/ijms21165719] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
202 Yue S, He H, Li B, Hou T. Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. Nanomaterials (Basel) 2020;10:E1511. [PMID: 32752105 DOI: 10.3390/nano10081511] [Cited by in Crossref: 59] [Cited by in F6Publishing: 64] [Article Influence: 29.5] [Reference Citation Analysis]
203 Asimeng BO, Karadag I, Iftekhar S, Xu Y, Czernuszka J. XRD and IR revelation of a unique g-C3N4 phase with effects on collagen/hydroxyapatite bone scaffold pore geometry and stiffness. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03218-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
204 Anitua E, Troya M, Zalduendo M, Flores J, Tierno R, Alkhraisat MH. The influence of alveolar bone healing degree on its potential as a source of human alveolar bone-derived cells. Ann Anat 2020;232:151578. [PMID: 32688020 DOI: 10.1016/j.aanat.2020.151578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
205 Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020;5:E34. [PMID: 32679703 DOI: 10.3390/biomimetics5030034] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 18.5] [Reference Citation Analysis]
206 Shirbhate N. Review on 3D Printed Bone Scaffold and Biocompatible Material. J3DPA 2020;1:12-22. [DOI: 10.14302/issn.2831-8846.j3dpa-20-3438] [Reference Citation Analysis]
207 Karadas O, Mese G, Ozcivici E. Low magnitude high frequency vibrations expedite the osteogenesis of bone marrow stem cells on paper based 3D scaffolds. Biomed Eng Lett 2020;10:431-41. [PMID: 32850178 DOI: 10.1007/s13534-020-00161-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
208 Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. Mater Sci Eng C Mater Biol Appl 2020;117:111245. [PMID: 32919623 DOI: 10.1016/j.msec.2020.111245] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
209 Zhu J, Tang D, Lu Z, Xin Z, Song J, Meng J, Lu JR, Li Z, Li J. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres. Mater Sci Eng C Mater Biol Appl 2020;116:111168. [PMID: 32806301 DOI: 10.1016/j.msec.2020.111168] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
210 Weng W, Häussling V, Aspera-Werz RH, Springer F, Rinderknecht H, Braun B, Küper MA, Nussler AK, Ehnert S. Material-Dependent Formation and Degradation of Bone Matrix-Comparison of Two Cryogels. Bioengineering (Basel) 2020;7:E52. [PMID: 32517006 DOI: 10.3390/bioengineering7020052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
211 Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020;42:18. [PMID: 32548078 DOI: 10.1186/s40902-020-00263-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
212 Pelaseyed SS, Madaah Hosseini HR, Nokhbedehghan Z, Samadikuchaksaraei A. PLGA/TiO2 nanocomposite scaffolds for biomedical applications: fabrication, photocatalytic, and antibacterial properties. Bioimpacts 2021;11:45-52. [PMID: 33469507 DOI: 10.34172/bi.2021.06] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
213 Xu JL, Lesniak A, Gowen AA. Predictive Modeling of the In Vitro Responses of Preosteoblastic MC3T3-E1 Cells on Polymeric Surfaces Using Fourier Transform Infrared Spectroscopy. ACS Appl Mater Interfaces 2020;12:24466-78. [PMID: 32374584 DOI: 10.1021/acsami.0c04261] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
214 Bez M, Pelled G, Gazit D. BMP gene delivery for skeletal tissue regeneration. Bone 2020;137:115449. [PMID: 32447073 DOI: 10.1016/j.bone.2020.115449] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
215 Bedini R, Pecci R, Meleo D, Campioni I. Bone Substitutes Scaffold in Human Bone: Comparative Evaluation by 3D Micro-CT Technique. Applied Sciences 2020;10:3451. [DOI: 10.3390/app10103451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
216 Diaz-Gomez L, Elizondo ME, Kontoyiannis PD, Koons GL, Dacunha-Marinho B, Zhang X, Ajayan P, Jansen JA, Melchiorri AJ, Mikos AG. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue Eng Part C Methods 2020;26:292-305. [PMID: 32326874 DOI: 10.1089/ten.TEC.2020.0050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
217 Kumar P, Kumar V, Kumar R, Kumar R, Pruncu CI. Fabrication and characterization of ZrO2 incorporated SiO2-CaO-P2O5 bioactive glass scaffolds. J Mech Behav Biomed Mater 2020;109:103854. [PMID: 32543414 DOI: 10.1016/j.jmbbm.2020.103854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
218 Pierantozzi D, Scalzone A, Jindal S, Stīpniece L, Šalma-ancāne K, Dalgarno K, Gentile P, Mancuso E. 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering. Composites Science and Technology 2020;191:108069. [DOI: 10.1016/j.compscitech.2020.108069] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
219 Effendi MD, Gustiono D. Effect of sintering holding time on the properties of Hydroxyapatite granules fabrication using dripping technique of HA-Alginate sintered at 1000 °C. IOP Conf Ser : Mater Sci Eng 2020;857:012023. [DOI: 10.1088/1757-899x/857/1/012023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
220 Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020;12:E905. [PMID: 32295115 DOI: 10.3390/polym12040905] [Cited by in Crossref: 84] [Cited by in F6Publishing: 89] [Article Influence: 42.0] [Reference Citation Analysis]
221 Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 2020;156:430-7. [PMID: 32294496 DOI: 10.1016/j.ijbiomac.2020.04.059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
222 Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. Materials (Basel) 2020;13:E1500. [PMID: 32218290 DOI: 10.3390/ma13071500] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
223 Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Mater Sci Eng C Mater Biol Appl 2020;111:110848. [PMID: 32279778 DOI: 10.1016/j.msec.2020.110848] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 19.0] [Reference Citation Analysis]
224 Böhrnsen F, Melsheimer P, Natorp M, Rolf H, Schminke B, Kauffmann P, Wolfer S, Schliephake H. Cotransplantation of mesenchymal stromal cells and endothelial cells on calcium carbonate and hydroxylapatite scaffolds in vivo. J Craniomaxillofac Surg 2021;49:238-45. [PMID: 33483245 DOI: 10.1016/j.jcms.2020.03.001] [Reference Citation Analysis]
225 Abbasi N, Hamlet S, Dau VT, Nguyen N. Calcium phosphate stability on melt electrowritten PCL scaffolds. Journal of Science: Advanced Materials and Devices 2020;5:30-9. [DOI: 10.1016/j.jsamd.2020.01.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
226 Nizan NSNH, Zulkifli FH, Hamid HA, Mazwir MH. Effect of Different Concentration of Cellulose Nanocrystals Comprising Hydroxyethyl Cellulose / Poly(Vinyl Alcohol) as a Bone Tissue Engineering Scaffold. MSF 2020;981:285-290. [DOI: 10.4028/www.scientific.net/msf.981.285] [Reference Citation Analysis]
227 Fan C, Zhan S, Dong Z, Yang W, Deng W, Liu X, Wang D, Sun P. Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Materials Science and Engineering: C 2020;108:110399. [DOI: 10.1016/j.msec.2019.110399] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
228 Abbasi N, Hamlet S, Love RM, Nguyen N. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 2020;5:1-9. [DOI: 10.1016/j.jsamd.2020.01.007] [Cited by in Crossref: 136] [Cited by in F6Publishing: 142] [Article Influence: 68.0] [Reference Citation Analysis]
229 Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020;18:E123. [PMID: 32092907 DOI: 10.3390/md18020123] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
230 Akturk A, Erol Taygun M, Goller G. Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering. Polymer Composites 2020;41:2411-25. [DOI: 10.1002/pc.25545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
231 Wałach W, Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Kijeńska-Gawrońska E, Górecka Ż, Święszkowski W, Dworak A. Processing of (Co)Poly(2-oxazoline)s by Electrospinning and Extrusion from Melt and the Postprocessing Properties of the (Co)Polymers. Polymers (Basel) 2020;12:E295. [PMID: 32024273 DOI: 10.3390/polym12020295] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
232 El Moshy S, Radwan IA, Rady D, Abbass MMS, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM. Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications. Stem Cells Int 2020;2020:7593402. [PMID: 32089709 DOI: 10.1155/2020/7593402] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 24.5] [Reference Citation Analysis]
233 Yan J, Lu X, Zhu X, Hu X, Wang L, Qian J, Zhang F, Liu M. Effects of miR-26a on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by a Mesoporous Silica Nanoparticle - PEI - Peptide System. Int J Nanomedicine 2020;15:497-511. [PMID: 32158207 DOI: 10.2147/IJN.S228797] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
234 Karpov TE, Peltek OO, Muslimov AR, Tarakanchikova YV, Grunina TM, Poponova MS, Karyagina AS, Chernozem RV, Pariy IO, Mukhortova YR, Zhukov MV, Surmeneva MA, Zyuzin MV, Timin AS, Surmenev RA. Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds To Promote Prolonged Release. ACS Appl Mater Interfaces 2020;12:5578-92. [PMID: 31886639 DOI: 10.1021/acsami.9b20697] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
235 Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 2020;24:2. [PMID: 31911842 DOI: 10.1186/s40824-019-0180-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
236 Perez-puyana V, Rubio-valle J, Jiménez-rosado M, Guerrero A, Romero A. Chitosan as a potential alternative to collagen for the development of genipin-crosslinked scaffolds. Reactive and Functional Polymers 2020;146:104414. [DOI: 10.1016/j.reactfunctpolym.2019.104414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
237 Swetha S, Lavanya K, Sruthi R, Selvamurugan N. An insight into cell-laden 3D-printed constructs for bone tissue engineering. J Mater Chem B 2020;8:9836-62. [DOI: 10.1039/d0tb02019b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
238 Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020;10:33782-835. [DOI: 10.1039/d0ra04287k] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 24.0] [Reference Citation Analysis]
239 Agrawal S, Srivastava R. Osteoinductive and Osteoconductive Biomaterials. Racing for the Surface 2020. [DOI: 10.1007/978-3-030-34471-9_15] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
240 Mallick S, Beyene Z, Suman DK, Madhual A, Singh BN, Srivastava P. Strategies towards Orthopaedic Tissue Engineered Graft Generation: Current Scenario and Application. Biotechnol Bioproc E 2019;24:854-69. [DOI: 10.1007/s12257-019-0086-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
241 Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules 2019;9:E840. [PMID: 31817802 DOI: 10.3390/biom9120840] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
242 Casimiro MH, Ferreira LM, Leal JP, Pereira CCL, Monteiro B. Ionizing Radiation for Preparation and Functionalization of Membranes and Their Biomedical and Environmental Applications. Membranes (Basel) 2019;9:E163. [PMID: 31816943 DOI: 10.3390/membranes9120163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
243 Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2020;230:115658. [PMID: 31887899 DOI: 10.1016/j.carbpol.2019.115658] [Cited by in Crossref: 119] [Cited by in F6Publishing: 100] [Article Influence: 39.7] [Reference Citation Analysis]
244 Bracey DN, Jinnah AH, Willey JS, Seyler TM, Hutchinson ID, Whitlock PW, Smith TL, Danelson KA, Emory CL, Kerr BA. Investigating the Osteoinductive Potential of a Decellularized Xenograft Bone Substitute. Cells Tissues Organs 2019;207:97-113. [PMID: 31655811 DOI: 10.1159/000503280] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
245 Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 2019;4:271-292. [PMID: 31709311 DOI: 10.1016/j.bioactmat.2019.10.005] [Cited by in Crossref: 331] [Cited by in F6Publishing: 352] [Article Influence: 110.3] [Reference Citation Analysis]
246 Paula ACC, Carvalho PH, Martins TMM, Boeloni JN, Cunha PS, Novikoff S, Correlo VM, Reis RL, Goes AM. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. Mater Sci Eng C Mater Biol Appl 2020;107:110301. [PMID: 31761156 DOI: 10.1016/j.msec.2019.110301] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
247 Marcos, Perrotti, Iaculli, Aragones, Benfatti, Magrin, Piattelli, Bianchini. Physical and Mechanical Properties of Composite Scaffolds with or without Collagen Impregnation. Applied Sciences 2019;9:4296. [DOI: 10.3390/app9204296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
248 Basu P, Saha N, Saha P. Swelling and rheological study of calcium phosphate filled bacterial cellulose‐based hydrogel scaffold. J Appl Polym Sci 2019;137:48522. [DOI: 10.1002/app.48522] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
249 Nezafati N, Farokhi M, Heydari M, Hesaraki S, Nasab NA. In vitro bioactivity and cytocompatablity of an injectable calcium phosphate cement/silanated gelatin microsphere composite bone cement. Composites Part B: Engineering 2019;175:107146. [DOI: 10.1016/j.compositesb.2019.107146] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
250 Pereira Rodrigues IC, Tamborlin L, Rodrigues AA, Jardini AL, Ducati Luchessi A, Maciel Filho R, Najar Lopes ÉS, Pellizzer Gabriel L. Polyurethane fibrous membranes tailored by rotary jet spinning for tissue engineering applications. J Appl Polym Sci 2019;137:48455. [DOI: 10.1002/app.48455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
251 Häussling V, Deninger S, Vidoni L, Rinderknecht H, Ruoß M, Arnscheidt C, Athanasopulu K, Kemkemer R, Nussler AK, Ehnert S. Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2019;6:E67. [PMID: 31394780 DOI: 10.3390/bioengineering6030067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
252 Reyna-urrutia VA, Mata-haro V, Cauich-rodriguez JV, Herrera-kao WA, Cervantes-uc JM. Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. European Polymer Journal 2019;117:424-33. [DOI: 10.1016/j.eurpolymj.2019.05.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
253 Li Y, Liao C, Tjong SC. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials (Basel) 2019;9:E952. [PMID: 31261995 DOI: 10.3390/nano9070952] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
254 Abbasi N, Abdal-hay A, Hamlet S, Graham E, Ivanovski S. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds. ACS Biomater Sci Eng 2019;5:3448-61. [DOI: 10.1021/acsbiomaterials.8b01456] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
255 Jamalpoor Z, Soleimani M, Taromi N, Asgari A. Comparative evaluation of morphology and osteogenic behavior of human Wharton's jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. J Cell Physiol 2019;234:23123-34. [DOI: 10.1002/jcp.28876] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
256 Ahangar P, Cooke ME, Weber MH, Rosenzweig DH. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences 2019;9:1713. [DOI: 10.3390/app9081713] [Cited by in Crossref: 124] [Cited by in F6Publishing: 130] [Article Influence: 41.3] [Reference Citation Analysis]