BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021;22:8969. [PMID: 34445672 DOI: 10.3390/ijms22168969] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022. [DOI: 10.1007/s12272-022-01410-5] [Reference Citation Analysis]
2 Wang XY, Lu LJ, Li YM, Xu CF. MicroRNA-376b-3p ameliorates nonalcoholic fatty liver disease by targeting FGFR1 and regulating lipid oxidation in hepatocytes. Life Sci 2022;:120925. [PMID: 36057399 DOI: 10.1016/j.lfs.2022.120925] [Reference Citation Analysis]
3 Huang CY, Oka SI, Xu X, Chen CF, Tung CY, Chang YY, Mourad Y, Vehra O, Ivessa A, Yehia G, Romanienko P, Hsu CP, Sadoshima J. PERM1 regulates genes involved in fatty acid metabolism in the heart by interacting with PPARα and PGC-1α. Sci Rep 2022;12:14576. [PMID: 36028747 DOI: 10.1038/s41598-022-18885-3] [Reference Citation Analysis]
4 Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022;16:32. [PMID: 35996156 DOI: 10.1186/s40246-022-00408-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022;154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Reference Citation Analysis]
6 Gart E, van Duyvenvoorde W, Caspers MPM, van Trigt N, Snabel J, Menke A, Keijer J, Salic K, Morrison MC, Kleemann R. Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr-/-.Leiden mice with manifest obesity-associated NASH. FASEB J 2022;36:e22435. [PMID: 35830259 DOI: 10.1096/fj.202200111R] [Reference Citation Analysis]
7 Liang S, Yang X, Zhu X, Ibrar M, Liu L, Li S, Li X, Tian T, Li S. Metabolic Engineering to Improve Docosahexaenoic Acid Production in Marine Protist Aurantiochytrium sp. by Disrupting 2,4-Dienoyl-CoA Reductase. Front Mar Sci 2022;9:939716. [DOI: 10.3389/fmars.2022.939716] [Reference Citation Analysis]
8 Tang Z, Li L, Xia Z. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. ACS Omega. [DOI: 10.1021/acsomega.2c02629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Calder PC. Omega-3 fatty acids and metabolic partitioning of fatty acids within the liver in the context of nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2022;25:248-55. [PMID: 35762160 DOI: 10.1097/MCO.0000000000000845] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Gart E, Salic K, Morrison MC, Giera M, Attema J, de Ruiter C, Caspers M, Schuren F, Bobeldijk-pastorova I, Heer M, Qin Y, Kleemann R. The Human Milk Oligosaccharide 2′-Fucosyllactose Alleviates Liver Steatosis, ER Stress and Insulin Resistance by Reducing Hepatic Diacylglycerols and Improved Gut Permeability in Obese Ldlr-/-.Leiden Mice. Front Nutr 2022;9:904740. [DOI: 10.3389/fnut.2022.904740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jutrić D, Đikić D, Boroš A, Odeh D, Drozdek SD, Gračan R, Dragičević P, Crnić I, Jurčević IL. Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arh Hig Rada Toksikol 2022;73:71-82. [PMID: 35390239 DOI: 10.2478/aiht-2022-73-3608] [Reference Citation Analysis]
12 Dhanyalayam D, Thangavel H, Lizardo K, Oswal N, Dolgov E, Perlin DS, Nagajyothi JF. Sex Differences in Cardiac Pathology of SARS-CoV2 Infected and Trypanosoma cruzi Co-infected Mice. Front Cardiovasc Med 2022;9:783974. [DOI: 10.3389/fcvm.2022.783974] [Reference Citation Analysis]
13 Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-3-031-11836-4_5] [Reference Citation Analysis]
14 Azuma YT, Fujita T, Izawa T, Hirota K, Nishiyama K, Ikegami A, Aoyama T, Ike M, Ushikai Y, Kuwamura M, Fujii H, Tsuneyama K. IL-19 Contributes to the Development of Nonalcoholic Steatohepatitis by Altering Lipid Metabolism. Cells 2021;10:3513. [PMID: 34944021 DOI: 10.3390/cells10123513] [Reference Citation Analysis]
15 Zhang H, Zhao C, Liu Q, Zhang Y, Luo K, Pu Y, Yin L. Dysregulation of fatty acid metabolism associated with esophageal inflammation of ICR mice induced by nitrosamines exposure. Environ Pollut 2021;:118680. [PMID: 34915095 DOI: 10.1016/j.envpol.2021.118680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Manca C, Pintus S, Murru E, Fantola G, Vincis M, Batetta B, Moroni E, Carta G, Banni S. Fatty Acid Metabolism and Derived-Mediators Distinctive of PPAR-α Activation in Obese Subjects Post Bariatric Surgery. Nutrients 2021;13:4340. [PMID: 34959892 DOI: 10.3390/nu13124340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]