BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El-Sahli S, Wang L. Cancer Stem Cell-Associated Pathways in the Metabolic Reprogramming of Breast Cancer. Int J Mol Sci 2020;21:E9125. [PMID: 33266219 DOI: 10.3390/ijms21239125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Jovanović Galović A, Jovanović Lješković N, Vidović S, Vladić J, Jojić N, Ilić M, Srdić Rajić T, Kojić V, Jakimov D. The Effects of Resveratrol-Rich Extracts of Vitis vinifera Pruning Waste on HeLa, MCF-7 and MRC-5 Cells: Apoptosis, Autophagia and Necrosis Interplay. Pharmaceutics 2022;14:2017. [DOI: 10.3390/pharmaceutics14102017] [Reference Citation Analysis]
2 Liu J, Nie C. KDM5B regulates the PTEN/PI3K/Akt pathway to increase sorafenib-resistance in hepatocellular carcinoma. Anticancer Drugs 2022. [PMID: 35946516 DOI: 10.1097/CAD.0000000000001329] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Gutierrez-cruz JA, Maldonado V, Melendez-zajgla J. Regulation of the Cancer Stem Phenotype by Long Non-Coding RNAs. Cells 2022;11:2352. [DOI: 10.3390/cells11152352] [Reference Citation Analysis]
4 Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022;12:856974. [PMID: 35392236 DOI: 10.3389/fonc.2022.856974] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
5 Sun M, Liu X, Zhao W, Zhang B, Deng P. Circ_0058063 contributes to cisplatin-resistance of bladder cancer cells by upregulating B2M through acting as RNA sponges for miR-335-5p. BMC Cancer 2022;22:313. [PMID: 35321689 DOI: 10.1186/s12885-022-09419-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Liu Y, Ma L, Hua F, Min Z, Zhan Y, Zhang W, Yao J. Exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer. Oncogene 2022. [PMID: 35027669 DOI: 10.1038/s41388-021-02061-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021;19:423. [PMID: 34915901 DOI: 10.1186/s12951-021-01174-y] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
8 Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021;9:895. [PMID: 34440098 DOI: 10.3390/biomedicines9080895] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021;10:1772. [PMID: 34359941 DOI: 10.3390/cells10071772] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Shen Y, Chen C, Chen B, Wu Y, Juan J, Chen L, Teng Y, Wei Y. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021;10:1772. [DOI: 10.3390/cells10071772] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Zhang H, Steed A, Co M, Chen X. Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer. Cancer Drug Resist 2021;4:684-709. [PMID: 34322664 DOI: 10.20517/cdr.2021.32] [Cited by in F6Publishing: 3] [Reference Citation Analysis]