BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen TH. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int J Mol Sci. 2020;21. [PMID: 32392694 DOI: 10.3390/ijms21093297] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Torroba B, Macabuag N, Haisma EM, O'Neill A, Herva ME, Redis RS, Templin MV, Black LE, Fischer DF. RNA-based drug discovery for spinal muscular atrophy: a story of small molecules and antisense oligonucleotides. Expert Opin Drug Discov 2023;18:181-92. [PMID: 36408582 DOI: 10.1080/17460441.2022.2149733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lejman J, Panuciak K, Nowicka E, Mastalerczyk A, Wojciechowska K, Lejman M. Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int J Mol Sci 2023;24. [PMID: 36674643 DOI: 10.3390/ijms24021130] [Reference Citation Analysis]
3 Shpilyukova YA, Illarioshkin SN. Adult spinal muscular atrophy: problems of early diagnosis. Neuromuscular Diseases 2022;12:37-45. [DOI: 10.17650/2222-8721-2022-12-4-37-45] [Reference Citation Analysis]
4 Bieniaszewska A, Sobieska M, Gajewska E. Prospective Analysis of Functional and Structural Changes in Patients with Spinal Muscular Atrophy-A Pilot Study. Biomedicines 2022;10. [PMID: 36551943 DOI: 10.3390/biomedicines10123187] [Reference Citation Analysis]
5 Day JW, Howell K, Place A, Long K, Rossello J, Kertesz N, Nomikos G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr 2022;22:632. [PMID: 36329412 DOI: 10.1186/s12887-022-03671-x] [Reference Citation Analysis]
6 López-cortés A, Echeverría-garcés G, Ramos-medina MJ. Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy. Biology 2022;11:894. [DOI: 10.3390/biology11060894] [Reference Citation Analysis]
7 Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Maretina MA, Kiselev AV, Ilina AV, Egorova AA, Glotov AS, Bespalova ON, Baranov VS, Kogan IY. Current Trends in the Diagnosis, Screening and Treatment of Spinal Muscular Atrophy. Annals RAMS 2022;77:87-96. [DOI: 10.15690/vramn1768] [Reference Citation Analysis]
9 Ruffo P, Cavallaro S, Conforti FL. The Advent of Omics Sciences in Clinical Trials of Motor Neuron Diseases. JPM 2022;12:758. [DOI: 10.3390/jpm12050758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Tan C, Yan Y, Guo N, Wang F, Wang S, Zhu L, Wang Y, Ma Y, Guo Y. Single-Tube Multiplex Digital Polymerase Chain Reaction Assay for Molecular Diagnosis and Prediction of Severity of Spinal Muscular Atrophy. Anal Chem 2022. [PMID: 35137581 DOI: 10.1021/acs.analchem.1c04403] [Reference Citation Analysis]
11 Allison RL, Welby E, Khayrullina G, Burnett BG, Ebert AD. Viral mediated knockdown of GATA6 in SMA iPSC-derived astrocytes prevents motor neuron loss and microglial activation. Glia 2022. [PMID: 35088910 DOI: 10.1002/glia.24153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Smith M. Public health applications of genetics including newborn screening and documentation of gene environment interactions. Progress in Genomic Medicine 2022. [DOI: 10.1016/b978-0-323-91547-2.00009-9] [Reference Citation Analysis]
13 Ravel-Chapuis A, Haghandish A, Daneshvar N, Jasmin BJ, Côté J. A novel CARM1-HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Hum Mol Genet 2021:ddab333. [PMID: 34791230 DOI: 10.1093/hmg/ddab333] [Reference Citation Analysis]
14 Boido M, De Amicis E, Mareschi K, Fagioli F, Vercelli A. Organotypic spinal cord cultures: An <em>in vitro</em> 3D model to preliminary screen treatments for spinal muscular atrophy. Eur J Histochem 2021;65. [PMID: 34734684 DOI: 10.4081/ejh.2021.3294] [Reference Citation Analysis]
15 Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021;14:695937. [PMID: 34690692 DOI: 10.3389/fnmol.2021.695937] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Allison RL, Welby E, Khayrullina G, Burnett BG, Ebert AD. Viral mediated knockdown of GATA6 in SMA iPSC-derived astrocytes prevents motor neuron loss and microglial activation.. [DOI: 10.1101/2021.10.11.463972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Boulay C, Peltier E, Jouve JL, Pesenti S. Functional and surgical treatments in patients with spinal muscular atrophy (SMA). Arch Pediatr 2020;27:7S35-9. [PMID: 33357596 DOI: 10.1016/S0929-693X(20)30275-X] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021;12:1346. [PMID: 34573328 DOI: 10.3390/genes12091346] [Reference Citation Analysis]
19 Bruno I, Selicorni A. Malattie rare. Medico e Bambino 2021;40:1-5. [DOI: 10.53126/meb40s707] [Reference Citation Analysis]
20 Feng Z, Lam S, Tenn ES, Ghosh AS, Cantor S, Zhang W, Yen PF, Chen KS, Burden S, Paushkin S, Ayalon G, Ko CP. Activation of Muscle-Specific Kinase (MuSK) Reduces Neuromuscular Defects in the Delta7 Mouse Model of Spinal Muscular Atrophy (SMA). Int J Mol Sci 2021;22:8015. [PMID: 34360794 DOI: 10.3390/ijms22158015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Behera B. Nusinersen, an exon 7 inclusion drug for spinal muscular atrophy: A minireview. World J Meta-Anal 2021; 9(3): 277-285 [DOI: 10.13105/wjma.v9.i3.277] [Reference Citation Analysis]
22 Barrett D, Bilic S, Chyung Y, Cote SM, Iarrobino R, Kacena K, Kalra A, Long K, Nomikos G, Place A, Still JG, Vrishabhendra L. A Randomized Phase 1 Safety, Pharmacokinetic and Pharmacodynamic Study of the Novel Myostatin Inhibitor Apitegromab (SRK-015): A Potential Treatment for Spinal Muscular Atrophy. Adv Ther 2021;38:3203-22. [PMID: 33963971 DOI: 10.1007/s12325-021-01757-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
23 Gandhi G, Abdullah S, Foead AI, Yeo WWY. The potential role of miRNA therapies in spinal muscle atrophy. J Neurol Sci 2021;427:117485. [PMID: 34015517 DOI: 10.1016/j.jns.2021.117485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Eisenkölbl A. Neue Therapiemöglichkeiten der spinalen Muskelatrophie. Paediatr Paedolog 2021;56:59-66. [DOI: 10.1007/s00608-021-00870-0] [Reference Citation Analysis]
25 Baranello G, Gorni K, Daigl M, Kotzeva A, Evans R, Hawkins N, Scott DA, Mahajan A, Muntoni F, Servais L. Prognostic Factors and Treatment-Effect Modifiers in Spinal Muscular Atrophy. Clin Pharmacol Ther 2021. [PMID: 33792051 DOI: 10.1002/cpt.2247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 2021;6:78. [PMID: 33623018 DOI: 10.1038/s41392-021-00486-7] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 43.5] [Reference Citation Analysis]
27 Peristeri E, Dardiotis E. Editorial for Special Issue "Genetic Basis and Epidemiology of Myopathies". Int J Mol Sci 2021;22:2152. [PMID: 33671495 DOI: 10.3390/ijms22042152] [Reference Citation Analysis]
28 Ojala KS, Reedich EJ, DiDonato CJ, Meriney SD. In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021;11:194. [PMID: 33562482 DOI: 10.3390/brainsci11020194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
29 Chen TH. Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord 2020;13:1756286420979954. [PMID: 33488772 DOI: 10.1177/1756286420979954] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
30 Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl Clin Genet 2021;14:11-25. [PMID: 33531827 DOI: 10.2147/TACG.S239603] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
31 Li YJ, Chen TH, Wu YZ, Tseng YH. Metabolic and Nutritional Issues Associated with Spinal Muscular Atrophy. Nutrients 2020;12:E3842. [PMID: 33339220 DOI: 10.3390/nu12123842] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
32 Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020;15:2633105520973985. [PMID: 33283185 DOI: 10.1177/2633105520973985] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
33 Paul GR, Gushue C, Kotha K, Shell R. The respiratory impact of novel therapies for spinal muscular atrophy. Pediatr Pulmonol 2021;56:721-8. [PMID: 33098622 DOI: 10.1002/ppul.25135] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Pierzynowska K, Kamińska T, Węgrzyn G. One drug to treat many diseases: unlocking the economic trap of rare diseases. Metab Brain Dis 2020;35:1237-40. [PMID: 32926291 DOI: 10.1007/s11011-020-00617-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
35 Zafeiriou D. Gene therapy for spinal muscular atrophy: Solomon's consensus in Covid times. European Journal of Paediatric Neurology 2020;28:2-3. [DOI: 10.1016/j.ejpn.2020.08.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Messina S, Sframeli M. New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. J Clin Med 2020;9:E2222. [PMID: 32668756 DOI: 10.3390/jcm9072222] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 18.3] [Reference Citation Analysis]
37 Rathore FA, Afridi A. Does physical exercise training improve functional performance in type 3 spinal muscular atrophy? A Cochrane Review summary with commentary. Dev Med Child Neurol 2020;62:1014-6. [DOI: 10.1111/dmcn.14622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Mitchell JM, Nemesh J, Ghosh S, Handsaker RE, Mello CJ, Meyer D, Raghunathan K, de Rivera H, Tegtmeyer M, Hawes D, Neumann A, Nehme R, Eggan K, Mccarroll SA. Mapping genetic effects on cellular phenotypes with “cell villages”.. [DOI: 10.1101/2020.06.29.174383] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]