1 |
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023;11:912. [DOI: 10.3390/biomedicines11030912] [Reference Citation Analysis]
|
2 |
Gortan Cappellari G, Guillet C, Poggiogalle E, Ballesteros Pomar MD, Batsis JA, Boirie Y, Breton I, Frara S, Genton L, Gepner Y, Gonzalez MC, Heymsfield SB, Kiesswetter E, Laviano A, Prado CM, Santini F, Serlie MJ, Siervo M, Villareal DT, Volkert D, Voortman T, Weijs PJ, Zamboni M, Bischoff SC, Busetto L, Cederholm T, Barazzoni R, Donini LM; SOGLI Expert Panel. Sarcopenic obesity research perspectives outlined by the sarcopenic obesity global leadership initiative (SOGLI) - Proceedings from the SOGLI consortium meeting in rome November 2022. Clin Nutr 2023;42:687-99. [PMID: 36947988 DOI: 10.1016/j.clnu.2023.02.018] [Reference Citation Analysis]
|
3 |
Monti E, Sarto F, Sartori R, Zanchettin G, Löfler S, Kern H, Narici MV, Zampieri S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: a narrative review. J Cachexia Sarcopenia Muscle 2023. [PMID: 36772862 DOI: 10.1002/jcsm.13189] [Reference Citation Analysis]
|
4 |
Graca FA, Stephan A, Wang YD, Shirinifard A, Jiao J, Vogel P, Labelle M, Demontis F. Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice. Cell Rep 2023;42:111934. [PMID: 36640353 DOI: 10.1016/j.celrep.2022.111934] [Reference Citation Analysis]
|
5 |
Moresi V, Renzini A, Cavioli G, Seelaender M, Coletti D, Gigli G, Cedola A. Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022;12:1149. [DOI: 10.3390/metabo12111149] [Reference Citation Analysis]
|
6 |
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022. [PMID: 36056593 DOI: 10.1111/joa.13749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Rao VK, Das D, Taneja R. Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers 2022;14:4258. [DOI: 10.3390/cancers14174258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Santos HO, Haluch CEF. Downregulation of Androgen Receptors upon Anabolic-Androgenic Steroids: A Cause or a Flawed Hypothesis of the Muscle-Building Plateau? Muscles 2022;1:92-101. [DOI: 10.3390/muscles1020010] [Reference Citation Analysis]
|
9 |
Sato-yamada Y, Strickland A, Sasaki Y, Bloom J, Diantonio A, Milbrandt J. SARM1 promotes axonal, synaptic, and mitochondrial pathologies in Charcot-Marie-Tooth disease type 2A.. [DOI: 10.1101/2022.05.17.492364] [Reference Citation Analysis]
|
10 |
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022;11. [PMID: 35626644 DOI: 10.3390/cells11101607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Renzini A, D’onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022;13:706003. [DOI: 10.3389/fphys.2022.706003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Beltrà M, Pin F, Ballarò R, Costelli P, Penna F. Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells 2021;10:3150. [PMID: 34831373 DOI: 10.3390/cells10113150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
13 |
Renzini A, Riera CS, Minic I, D'Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021;11:517. [PMID: 34436458 DOI: 10.3390/metabo11080517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021;321:C317-29. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
15 |
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021;12:252-73. [PMID: 33783983 DOI: 10.1002/jcsm.12678] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
|
16 |
Murach KA, Mobley CB, Zdunek CJ, Frick KK, Jones SR, McCarthy JJ, Peterson CA, Dungan CM. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle 2020;11:1705-22. [PMID: 32881361 DOI: 10.1002/jcsm.12617] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 11.7] [Reference Citation Analysis]
|
17 |
VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol 2020;11:1037. [PMID: 32982782 DOI: 10.3389/fphys.2020.01037] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
|