BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 2019;20:E6041. [PMID: 31801211 DOI: 10.3390/ijms20236041] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Yaghoobi A, Nazerian Y, Meymand AZ, Ansari A, Nazerian A, Niknejad H. Hypoxia-sensitive miRNA regulation via CRISPR/dCas9 loaded in hybrid exosomes: A novel strategy to improve embryo implantation and prevent placental insufficiency during pregnancy. Front Cell Dev Biol 2022;10:1082657. [PMID: 36704201 DOI: 10.3389/fcell.2022.1082657] [Reference Citation Analysis]
2 Lim KRQ, Yokota T. Current Strategies of Muscular Dystrophy Therapeutics: An Overview. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2772-3_1] [Reference Citation Analysis]
3 Sari-Ak D, Alomari O, Shomali RA, Lim J, Thimiri Govinda Raj DB. Advances in CRISPR-Cas9 for the Baculovirus Vector System: A Systematic Review. Viruses 2022;15. [PMID: 36680093 DOI: 10.3390/v15010054] [Reference Citation Analysis]
4 Mariot V, Dumonceaux J. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Front Genome Ed 2022;4. [DOI: 10.3389/fgeed.2022.937879] [Reference Citation Analysis]
5 Hirano J, Murakami K, Hayashi T. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Front Genome Ed 2022;4:888878. [DOI: 10.3389/fgeed.2022.888878] [Reference Citation Analysis]
6 Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Mol Pharm 2022;19:1669-86. [PMID: 35594500 DOI: 10.1021/acs.molpharmaceut.1c00916] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022;10:924914. [DOI: 10.3389/fbioe.2022.924914] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Luviano N, Duval D, Ittiprasert W, Allienne JF, Tavernier G, Chaparro C, Cosseau C, Grunau C. Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases. Front Cell Dev Biol 2022;10:794650. [PMID: 35295851 DOI: 10.3389/fcell.2022.794650] [Reference Citation Analysis]
9 Kim B, Kim Y, Shin S, Lee ST, Cho JY, Lee KA. Application of CRISPR/Cas9-based mutant enrichment technique to improve the clinical sensitivity of plasma EGFR testing in patients with non-small cell lung cancer. Cancer Cell Int 2022;22:82. [PMID: 35168603 DOI: 10.1186/s12935-022-02504-2] [Reference Citation Analysis]
10 Antony JS, Roberts SA, Wyrick JJ, Hinz JM. dCas9 binding inhibits the initiation of base excision repair in vitro. DNA Repair (Amst) 2022;109:103257. [PMID: 34847381 DOI: 10.1016/j.dnarep.2021.103257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ahmad Y, Haider S, Iqbal J, Abbasi BA, Yaseen T, Mahmood T. The Mechanisms of Genome Editing Technologies in Crop Plants. Principles and Practices of OMICS and Genome Editing for Crop Improvement 2022. [DOI: 10.1007/978-3-030-96925-7_13] [Reference Citation Analysis]
12 Kairuz D, Singh P, Smith T, Arbuthnot P, Ely A, Bloom K. Synthetic mRNA Gene Therapies and Hepatotropic Non-viral Vectors for the Treatment of Chronic HBV Infections. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_8] [Reference Citation Analysis]
13 Vetchinova AS, Fedotova EY, Illarioshkin SN. Editing the Epigenome in Neurodegenerative Diseases. Neurochem J 2021;15:359-66. [DOI: 10.1134/s1819712421040152] [Reference Citation Analysis]
14 Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021;12:743580. [PMID: 34899631 DOI: 10.3389/fmicb.2021.743580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Chulanov V, Kostyusheva A, Brezgin S, Ponomareva N, Gegechkori V, Volchkova E, Pimenov N, Kostyushev D. CRISPR Screening: Molecular Tools for Studying Virus-Host Interactions. Viruses 2021;13:2258. [PMID: 34835064 DOI: 10.3390/v13112258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021;113:3718-34. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Zhang H, Li R, Guo Y, Zhang Y, Zhang D, Yang L. LIFE-Seq: A universal Large Integrated DNA Fragment Enrichment Sequencing strategy for transgene integration in genetically modified organisms.. [DOI: 10.1101/2021.09.07.459346] [Reference Citation Analysis]
19 Kozovska Z, Rajcaniova S, Munteanu P, Dzacovska S, Demkova L. CRISPR: History and perspectives to the future. Biomed Pharmacother 2021;141:111917. [PMID: 34328110 DOI: 10.1016/j.biopha.2021.111917] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
20 Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021;13:1373. [PMID: 34372578 DOI: 10.3390/v13071373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Di Fiore R, Suleiman S, Felix A, O'Toole SA, O'Leary JJ, Ward MP, Beirne J, Sabol M, Ozretić P, Yordanov A, Vasileva-Slaveva M, Kostov S, Nikolova M, Said-Huntingford I, Ayers D, Ellul B, Pentimalli F, Giordano A, Calleja-Agius J. An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Int J Mol Sci 2021;22:6506. [PMID: 34204445 DOI: 10.3390/ijms22126506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Palmateer CM, Moseley SC, Ray S, Brovero SG, Arbeitman MN. Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior. PLoS Genet 2021;17:e1009240. [PMID: 33901168 DOI: 10.1371/journal.pgen.1009240] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, Chulanov V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2021:S1046-2023(21)00099-2. [PMID: 33839288 DOI: 10.1016/j.ymeth.2021.04.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
24 Dhar BC, Steimberg N, Mazzoleni G. Point-of-Care Pathogen Detection with CRISPR-based Programmable Nucleic Acid Binding Proteins. ChemMedChem 2021;16:1566-75. [PMID: 33258314 DOI: 10.1002/cmdc.202000782] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ryczek N, Hryhorowicz M, Zeyland J, Lipiński D, Słomski R. CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021;22:3196. [PMID: 33801123 DOI: 10.3390/ijms22063196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
26 Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J Clin Microbiol 2021;59:e00745-20. [PMID: 33148705 DOI: 10.1128/JCM.00745-20] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
27 Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021;137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kazi TA, Biswas SR. CRISPR/dCas system as the modulator of gene expression. Prog Mol Biol Transl Sci 2021;178:99-122. [PMID: 33685602 DOI: 10.1016/bs.pmbts.2020.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Mózsik L, Hoekzema M, de Kok NAW, Bovenberg RAL, Nygård Y, Driessen AJM. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi. Sci Rep 2021;11:1118. [PMID: 33441979 DOI: 10.1038/s41598-020-80864-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
30 Fal K, Tomkova D, Vachon G, Chabouté ME, Berr A, Carles CC. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. Int J Mol Sci 2021;22:E512. [PMID: 33419220 DOI: 10.3390/ijms22020512] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
31 Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021:S1044-579X(20)30278-9. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Lau CH, Bolt EL. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9. Biosci Rep 2021;41:BSR20203595. [PMID: 33289517 DOI: 10.1042/BSR20203595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Ghoshal B, Gardiner J. CRISPR-dCas9-Based Targeted Manipulation of DNA Methylation in Plants. Springer Protocols Handbooks 2021. [DOI: 10.1007/978-1-0716-1657-4_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol Ther Methods Clin Dev 2021;20:298-311. [PMID: 33511244 DOI: 10.1016/j.omtm.2020.12.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
35 Palmateer CM, Moseley SC, Ray S, Brovero SG, Arbeitman MN. Analysis of cell-type-specific chromatin modifications and gene expression inDrosophilaneurons that direct reproductive behavior.. [DOI: 10.1101/2020.11.16.384461] [Reference Citation Analysis]
36 Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2021;56:31-53. [PMID: 33172304 DOI: 10.1080/10409238.2020.1841726] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020;21:E7362. [PMID: 33028045 DOI: 10.3390/ijms21197362] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
38 Rafia C, Harly C, Scotet E. Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunol Rev 2020;298:117-33. [DOI: 10.1111/imr.12920] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
39 Brezgin S, Kostyusheva A, Ponomareva N, Volia V, Goptar I, Nikiforova A, Shilovskiy I, Smirnov V, Kostyushev D, Chulanov V. Clearing of Foreign Episomal DNA from Human Cells by CRISPRa-Mediated Activation of Cytidine Deaminases. Int J Mol Sci 2020;21:E6865. [PMID: 32962129 DOI: 10.3390/ijms21186865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 López-Girona E, Davy MW, Albert NW, Hilario E, Smart MEM, Kirk C, Thomson SJ, Chagné D. CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants. Plant Methods 2020;16:121. [PMID: 32884578 DOI: 10.1186/s13007-020-00661-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
41 Ramezankhani R, Minaei N, Haddadi M, Torabi S, Hesaraki M, Mirzaei H, Vosough M, Verfaillie CM. Gene editing technology for improving life quality: A dream coming true? Clin Genet 2021;99:67-83. [PMID: 32506418 DOI: 10.1111/cge.13794] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Ulbricht A, Nickel L, Weidenbach K, Vargas Gebauer H, Kießling C, Förstner KU, Schmitz RA. The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded cas1-solo Gene in Methanosarcina mazei Gö1. Biomolecules 2020;10:E1161. [PMID: 32784796 DOI: 10.3390/biom10081161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Sun W, Wang H. Recent advances of genome editing and related technologies in China. Gene Ther 2020;27:312-20. [DOI: 10.1038/s41434-020-0181-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
44 Burmistrz M, Krakowski K, Krawczyk-Balska A. RNA-Targeting CRISPR-Cas Systems and Their Applications. Int J Mol Sci 2020;21:E1122. [PMID: 32046217 DOI: 10.3390/ijms21031122] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]