BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci 2017;18:E94. [PMID: 28067783 DOI: 10.3390/ijms18010094] [Cited by in Crossref: 97] [Cited by in F6Publishing: 104] [Article Influence: 19.4] [Reference Citation Analysis]
Number Citing Articles
1 Mayer J, Krug C, Saller M, Feuchtinger A, Giunta R, Volkmer E, Holzbach T. Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model. Neural Regen Res 2023;18:652. [DOI: 10.4103/1673-5374.346464] [Reference Citation Analysis]
2 Jia X, Wang Z. Treating peripheral nerve injury-induced spinal cord degeneration and neuropathic pain with peripherally administrated stem cells. Neural Regen Res 2023;18:537. [DOI: 10.4103/1673-5374.346491] [Reference Citation Analysis]
3 Al-Maswary AA, O'Reilly M, Holmes AP, Walmsley AD, Cooper PR, Scheven BA. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS One 2022;17:e0277134. [PMID: 36331951 DOI: 10.1371/journal.pone.0277134] [Reference Citation Analysis]
4 Tsujimura M, Kusamori K, Takamura K, Ito T, Kaya T, Shimizu K, Konishi S, Nishikawa M. Quality evaluation of cell spheroids for transplantation by monitoring oxygen consumption using an on-chip electrochemical device. Biotechnol Rep (Amst) 2022;36:e00766. [PMID: 36245695 DOI: 10.1016/j.btre.2022.e00766] [Reference Citation Analysis]
5 Słysz A, Siennicka K, Kijeńska-gawrońska E, Dębski T, Zołocińska A, Święszkowski W, Pojda Z. The impact of electroconductive multifunctional composite nanofibrous scaffold on adipose-derived mesenchymal stem cells. Tissue and Cell 2022;78:101899. [DOI: 10.1016/j.tice.2022.101899] [Reference Citation Analysis]
6 Irfan M, Chung S. C5L2 modulates BDNF production in human dental pulp stem cells via p38α pathway under LPS-induced inflammation.. [DOI: 10.21203/rs.3.rs-1946313/v1] [Reference Citation Analysis]
7 Ma X, Elsner E, Cai J, Smith TL, Li Z, Strauer BE. Peripheral Nerve Regeneration with Acellular Nerve Allografts Seeded with Amniotic Fluid-Derived Stem Cells. Stem Cells International 2022;2022:1-9. [DOI: 10.1155/2022/5240204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang Z, Zhang M, Zhang Z, Sun Y, Wang J, Chang C, Zhu X, Li M, Liu Y, Meccariello R. ADSCs Combined with Melatonin Promote Peripheral Nerve Regeneration through Autophagy. International Journal of Endocrinology 2022;2022:1-17. [DOI: 10.1155/2022/5861553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yin L, An Y, Chen X, Yan H, Zhang T, Lu X, Yan J. Local vibration therapy promotes the recovery of nerve function in rats with sciatic nerve injury. Journal of Integrative Medicine 2022;20:265-273. [DOI: 10.1016/j.joim.2022.02.001] [Reference Citation Analysis]
10 Irfan M, Kim JH, Druzinsky RE, Ravindran S, Chung S. Complement C5aR/LPS-induced BDNF and NGF modulation in human dental pulp stem cells. Sci Rep 2022;12:2042. [PMID: 35132159 DOI: 10.1038/s41598-022-06110-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhou N, Xu Z, Li X, Ren S, Chen J, Xiong H, Wang C, Guo J, Kang Y, Chen Z, Li W, Yang X, Zhang X, Xu X. Schwann Cell-Derived Exosomes Induce the Differentiation of Human Adipose-Derived Stem Cells Into Schwann Cells. Front Mol Biosci 2022;8:835135. [DOI: 10.3389/fmolb.2021.835135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 M. Rosen J, Hong J, Klaudt-moreau J, Podsednik A, R. Hentz V. Frontiers of Brachial Plexus Injury: Future Revolutions in the Field. Brachial Plexus Injury - New Techniques and Ideas 2022. [DOI: 10.5772/intechopen.99209] [Reference Citation Analysis]
13 Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A 2022. [PMID: 35075781 DOI: 10.1002/jbm.a.37361] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Seo TB, Cho YH, Sakong H, Kim YP. Effect of treadmill exercise and bone marrow stromal cell engraftment on activation of BDNF-ERK-CREB signaling pathway in the crushed sciatic nerve. J Exerc Rehabil 2021;17:403-9. [PMID: 35036389 DOI: 10.12965/jer.2142626.313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022;13:18. [PMID: 35033187 DOI: 10.1186/s13287-021-02690-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
16 Tang N, Wang X, Zhu J, Sun K, Li S, Tao K. Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomater Sci 2022. [PMID: 34989358 DOI: 10.1039/d1bm01823j] [Reference Citation Analysis]
17 Huang Q, Cai Y, Yang X, Li W, Pu H, Liu Z, Liu H, Tamtaji M, Xu F, Sheng L, Kim T, Zhao S, Sun D, Qin J, Luo Z, Lu X. Graphene foam/hydrogel scaffolds for regeneration of peripheral nerve using ADSCs in a diabetic mouse model. Nano Res . [DOI: 10.1007/s12274-021-3961-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Adamowicz J, Kluth LA, Pokrywczynska M, Drewa T. Tissue Engineering and Its Potential to Reduce Prostate Cancer Treatment Sequelae-Narrative Review. Front Surg 2021;8:644057. [PMID: 34722618 DOI: 10.3389/fsurg.2021.644057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhang X, Lei T, Chen P, Wang L, Wang J, Wang D, Guo W, Zhou Y, Li Q, Du H. Stem Cells from Human Exfoliated Deciduous teeth Promote Hair Regeneration in Mouse. Cell Transplant 2021;30:9636897211042927. [PMID: 34633878 DOI: 10.1177/09636897211042927] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
20 Li Y, Kamei Y, Kambe M, Ebisawa K, Oishi M, Takanari K. Peripheral Nerve Regeneration Using Different Germ Layer-Derived Adult Stem Cells in the Past Decade. Behav Neurol 2021;2021:5586523. [PMID: 34539934 DOI: 10.1155/2021/5586523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021;10:e2001600. [PMID: 33200587 DOI: 10.1002/adhm.202001600] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
22 Saffari TM, Mathot F, Friedrich PF, Bishop AT, Shin AY. Surgical Angiogenesis of Decellularized Nerve Allografts Improves Early Functional Recovery in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2021;148:561-70. [PMID: 34292916 DOI: 10.1097/PRS.0000000000008291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-derived Erythroid Differentiation by Single-cell Transcriptome Analysis. Genomics Proteomics Bioinformatics 2021:S1672-0229(21)00153-4. [PMID: 34284135 DOI: 10.1016/j.gpb.2021.03.009] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Govbakh I, Kharkiv Medical Academy of Postgraduate Education, Ministry of Public Health of Ukraine, Kharkiv, Ukraine, Smozhanik K, Patseva M, Rubtsov V, Ustymenko A, Kyryk V, Tsupykov O, O.O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, O.O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, O.O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine. ULTRASTRUCTURAL ANALYSIS OF SCIATIC NERVE IN MICE WITH PERIPHERAL NEUROPATHY AFTER TRANSPLANTATION OF ADIPOSE-DERIVED MULTIPOTENT MESENCHYMAL STROMAL CELLS. Fiziol Zh 2021;67:17-26. [DOI: 10.15407/fz67.03.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pollack MM, Banks R, Holubkov R, Meert KL; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Morbidity and Mortality in Critically Ill Children. I. Pathophysiologies and Potential Therapeutic Solutions. Crit Care Med 2020;48:790-8. [PMID: 32301842 DOI: 10.1097/CCM.0000000000004331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
26 Wei Z, Shu S, Zhang M, Xie S, Tang S, Nie K, Li H. A Subpopulation of Schwann Cell-Like Cells With Nerve Regeneration Signatures Is Identified Through Single-Cell RNA Sequencing. Front Physiol 2021;12:637924. [PMID: 34093220 DOI: 10.3389/fphys.2021.637924] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Yoo MC, Chon J, Jung J, Kim SS, Bae S, Kim SH, Yeo SG. Potential Therapeutic Strategies and Substances for Facial Nerve Regeneration Based on Preclinical Studies. Int J Mol Sci 2021;22:4926. [PMID: 34066483 DOI: 10.3390/ijms22094926] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zhang Y, Xu X, Tong Y, Zhou X, Du J, Choi IY, Yue S, Lee G, Johnson BN, Jia X. Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transection. Stem Cell Res Ther 2021;12:180. [PMID: 33722287 DOI: 10.1186/s13287-021-02200-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
29 Li Y, Lv S, Yuan H, Ye G, Mu W, Fu Y, Zhang X, Feng Z, He Y, Chen W. Peripheral Nerve Regeneration with 3D Printed Bionic Scaffolds Loading Neural Crest Stem Cell Derived Schwann Cell Progenitors. Adv Funct Mater 2021;31:2010215. [DOI: 10.1002/adfm.202010215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Chen W, Ji L, Wei Z, Yang C, Chang S, Zhang Y, Nie K, Jiang L, Deng Y. miR-146a-3p suppressed the differentiation of hAMSCs into Schwann cells via inhibiting the expression of ERBB2. Cell Tissue Res 2021;384:99-112. [PMID: 33447879 DOI: 10.1007/s00441-020-03320-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Vincitorio F, Petrone S, Titolo P, Tartara F, Vercelli A, Garbossa D. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci 2021;22:E572. [PMID: 33430035 DOI: 10.3390/ijms22020572] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
32 Saffari S, Saffari TM, Ulrich DJO, Hovius SER, Shin AY. The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res 2021;16:1510-7. [PMID: 33433464 DOI: 10.4103/1673-5374.303009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
33 Saffari TM, Mathot F, Thaler R, van Wijnen AJ, Bishop AT, Shin AY. Microcomputed analysis of nerve angioarchitecture after combined stem cell delivery and surgical angiogenesis to nerve allograft. J Plast Reconstr Aesthet Surg 2021;74:1919-30. [PMID: 33436338 DOI: 10.1016/j.bjps.2020.12.039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Dong C, Qiao F, Hou W, Yang L, Lv Y. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Applied Materials Today 2020;21:100870. [DOI: 10.1016/j.apmt.2020.100870] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
35 Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020;115:235-49. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
36 Zhang S, Lachance BB, Moiz B, Jia X. Optimizing Stem Cell Therapy after Ischemic Brain Injury. J Stroke 2020;22:286-305. [PMID: 33053945 DOI: 10.5853/jos.2019.03048] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
37 Texakalidis P, Tora MS, Canute S, Hardcastle N, Poth K, Donsante A, Federici T, Javidfar J, Boulis NM. Minimally Invasive Injection to the Phrenic Nerve in a Porcine Hemidiaphragmatic Paralysis Model: A Pilot Study. Neurosurgery 2020;87:847-53. [PMID: 31625573 DOI: 10.1093/neuros/nyz473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Soman SS, Vijayavenkataraman S. Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020;21:E5792. [PMID: 32806758 DOI: 10.3390/ijms21165792] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
39 Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020:/j/revneuro. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Yonar M, Uehara M, Banouni N, Kasinath V, Li X, Jiang L, Zhao J, Bei F, Shin SR, Cetrulo CL, Annabi N, Abdi R. Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplant Direct 2020;6:e589. [PMID: 32766437 DOI: 10.1097/TXD.0000000000001012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS Appl Mater Interfaces 2020;12:36860-72. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
42 Damásio Alvites R, Vieira Branquinho M, Rita Caseiro A, Santos Pedrosa S, Lúcia Luís A, Geuna S, Severo Proença Varejão A, Colette Maurício A. Biomaterials and Cellular Systems at the Forefront of Peripheral Nerve Regeneration. Peripheral Nerve Disorders and Treatment 2020. [DOI: 10.5772/intechopen.87043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. Tissue Eng Part B Rev 2019;25:259-90. [PMID: 30896342 DOI: 10.1089/ten.TEB.2018.0325] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
44 Piao C, Li Z, Ding J, Kong D. Mechanical properties of the sciatic nerve following combined transplantation of analytically extracted acellular allogeneic nerve and adipose-derived mesenchymal stem cells. Acta Cir Bras 2020;35:e202000405. [PMID: 32555937 DOI: 10.1590/s0102-865020200040000005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Alawadhi E, Chu TH, Midha R. Comparative Behavioral Assessment of Lewis and Nude Rats after Peripheral Nerve Injury. Comp Med 2020;70:233-8. [PMID: 32384941 DOI: 10.30802/AALAS-CM-19-000079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Yuan YS, Niu SP, Yu F, Zhang YJ, Han N, Lu H, Yin XF, Xu HL, Kou YH. Intraoperative single administration of neutrophil peptide 1 accelerates the early functional recovery of peripheral nerves after crush injury. Neural Regen Res 2020;15:2108-15. [PMID: 32394969 DOI: 10.4103/1673-5374.282270] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Bolandghamat S, Behnam-Rassouli M. Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury. Curr Neuropharmacol 2020;18:1154-63. [PMID: 32379588 DOI: 10.2174/1570159X18666200507084024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Wu G, Li X, Li M, Zhang Z. Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p. Exp Cell Res 2020;390:111937. [PMID: 32135165 DOI: 10.1016/j.yexcr.2020.111937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
49 Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X. Application of stem cells in peripheral nerve regeneration. Burns Trauma 2020;8:tkaa002. [PMID: 32346538 DOI: 10.1093/burnst/tkaa002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
50 Xu X, Mee T, Jia X. New era of optogenetics: from the central to peripheral nervous system. Crit Rev Biochem Mol Biol 2020;55:1-16. [PMID: 32070147 DOI: 10.1080/10409238.2020.1726279] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
51 Rbia N, Bulstra LF, Friedrich PF, Bishop AT, Nijhuis THJ, Shin AY. Gene expression and growth factor analysis in early nerve regeneration following segmental nerve defect reconstruction with a mesenchymal stromal cell-enhanced decellularized nerve allograft. Plast Reconstr Surg Glob Open 2020;8:e2579. [PMID: 32095395 DOI: 10.1097/GOX.0000000000002579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
52 Kazemiha M, Sarveazad A, Moradi F, Ramezanpour F, Vosoogh M, Doshmanziari M, Shariatpanahi M, Eftekharzadeh M. Histological and Behavioral Alterations Following hADSCs Intravenous Administration in Alzheimer’s Rat Model. Thrita 2020;8. [DOI: 10.5812/thrita.99975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020;15:1421-31. [PMID: 31997801 DOI: 10.4103/1673-5374.271668] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
54 Petriv TI, Tsymbalyuk YV, Potapov OO, Kvasnitsʹkyy MV, Honcharuk OO, Tatarchuk MM. STEM CELL TECHNOLOGY IN PERIPHERAL NERVE RESTORATION. EUMJ 2020;8:210-229. [DOI: 10.21272/eumj.2020;8(2):210-229] [Reference Citation Analysis]
55 Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D, Carnevale G. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen Res. 2020;15:373-381. [PMID: 31571644 DOI: 10.4103/1673-5374.266043] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
56 Chen ZX, Lu HB, Jin XL, Feng WF, Yang XN, Qi ZL. Skeletal muscle-derived cells repair peripheral nerve defects in mice. Neural Regen Res 2020;15:152-61. [PMID: 31535664 DOI: 10.4103/1673-5374.264462] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
57 Margiana R, Aman RA, Pawitan JA, Jusuf AA, Ibrahim N, Wibowo H. The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats. Electron J Gen Med 2019;16:em171. [DOI: 10.29333/ejgm/115468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-Derived Erythroid Differentiation by Single-Cell Transcriptome Analysis.. [DOI: 10.1101/859777] [Reference Citation Analysis]
59 Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2020;317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
60 Liu Y, Dong R, Zhang C, Yang Y, Xu Y, Wang H, Zhang M, Zhu J, Wang Y, Sun Y, Zhang Z. Therapeutic effects of nerve leachate-treated adipose-derived mesenchymal stem cells on rat sciatic nerve injury. Exp Ther Med 2020;19:223-31. [PMID: 31853293 DOI: 10.3892/etm.2019.8203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
61 Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2020;98:780-95. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
62 Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019;13:2077-100. [PMID: 31350868 DOI: 10.1002/term.2945] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
63 Ramli K, Gasim AI, Ahmad AA, Htwe O, Mohamed Haflah NH, Law ZK, Hasan S, Naicker AS, Mokhtar SA, Muhamad Ariffin MH, Baharudin A, Tan GC, Haji Idrus R, Abdullah S, Ng MH. Efficacy of Human Cell-Seeded Muscle-Stuffed Vein Conduit in Rat Sciatic Nerve Repair. Tissue Eng Part A 2019;25:1438-55. [PMID: 30848172 DOI: 10.1089/ten.TEA.2018.0279] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
64 Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. Biomed Res Int. 2019;2019:6458237. [PMID: 31531362 DOI: 10.1155/2019/6458237] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 16.3] [Reference Citation Analysis]
65 Morena J, Gupta A, Hoyle JC. Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019;20:E3419. [PMID: 31336816 DOI: 10.3390/ijms20143419] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 22.0] [Reference Citation Analysis]
66 Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res 2019;107:2425-46. [DOI: 10.1002/jbm.a.36749] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
67 Zhao B, Zhao Z, Ma J, Ma X. Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neuroscience Letters 2019;705:259-64. [DOI: 10.1016/j.neulet.2019.01.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
68 Chen W, Xiao S, Wei Z, Deng C, Nie K, Wang D. Schwann Cell-Like Cells Derived from Human Amniotic Mesenchymal Stem Cells Promote Peripheral Nerve Regeneration through a MicroRNA-214/c-Jun Pathway. Stem Cells Int 2019;2019:2490761. [PMID: 31354837 DOI: 10.1155/2019/2490761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
69 Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019;13:288. [PMID: 31316355 DOI: 10.3389/fncel.2019.00288] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
70 Mao Q, Nguyen PD, Shanti RM, Shi S, Shakoori P, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration. Tissue Engineering Part A 2019;25:887-900. [DOI: 10.1089/ten.tea.2018.0176] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
71 Syu WZ, Hueng DY, Chen WL, Chan JY, Chen SG, Huang SM. Adipose-Derived Neural Stem Cells Combined with Acellular Dermal Matrix as a Neural Conduit Enhances Peripheral Nerve Repair. Cell Transplant 2019;28:1220-30. [PMID: 31148461 DOI: 10.1177/0963689719853512] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
72 Wong A, Pomerantz JH. The Role of Muscle Stem Cells in Regeneration and Recovery after Denervation: A Review. Plast Reconstr Surg 2019;143:779-88. [PMID: 30817650 DOI: 10.1097/PRS.0000000000005370] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
73 Hong GH, Liu JB, Liu YZ, Gao KM, Zhao X, Lao J. Modified contralateral C7 nerve transfer: the possibility of permitting ulnar nerve recovery is confirmed by 10 cases of autopsy. Neural Regen Res 2019;14:1449-54. [PMID: 30964072 DOI: 10.4103/1673-5374.253530] [Reference Citation Analysis]
74 Wang X, Rivera‐bolanos N, Jiang B, Ameer GA. Advanced Functional Biomaterials for Stem Cell Delivery in Regenerative Engineering and Medicine. Adv Funct Mater 2019;29:1809009. [DOI: 10.1002/adfm.201809009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 14.0] [Reference Citation Analysis]
75 Maldonado-Lasunción I, Verhaagen J, Oudega M. Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics 2018;15:578-87. [PMID: 29728851 DOI: 10.1007/s13311-018-0629-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
76 Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019;221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
77 Rbia N, Bulstra LF, Bishop AT, van Wijnen AJ, Shin AY. A Simple Dynamic Strategy to Deliver Stem Cells to Decellularized Nerve Allografts. Plast Reconstr Surg 2018;142:402-13. [PMID: 29889737 DOI: 10.1097/PRS.0000000000004614] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
78 Yang JT, Fang JT, Li L, Chen G, Qin BG, Gu LQ. Contralateral C7 transfer combined with acellular nerve allografts seeded with differentiated adipose stem cells for repairing upper brachial plexus injury in rats. Neural Regen Res 2019;14:1932-40. [PMID: 31290451 DOI: 10.4103/1673-5374.259626] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
79 Zheng MG, Sui WY, He ZD, Liu Y, Huang YL, Mu SH, Xu XZ, Zhang JS, Qu JL, Zhang J, Wang D. TrkA regulates the regenerative capacity of bone marrow stromal stem cells in nerve grafts. Neural Regen Res 2019;14:1765-71. [PMID: 31169194 DOI: 10.4103/1673-5374.257540] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
80 Farzamfar S, Ehterami A, Salehi M, Vaeez A, Atashi A, Sahrapeyma H. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration. J Mol Neurosci 2019;67:48-61. [DOI: 10.1007/s12031-018-1209-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
81 Du J, Chen H, Zhou K, Jia X. Quantitative Multimodal Evaluation of Passaging Human Neural Crest Stem Cells for Peripheral Nerve Regeneration. Stem Cell Rev Rep 2018;14:92-100. [PMID: 28780695 DOI: 10.1007/s12015-017-9758-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
82 Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. Engineering molecular imaging strategies for regenerative medicine. Bioeng Transl Med 2018;3:232-55. [PMID: 30377663 DOI: 10.1002/btm2.10114] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
83 Rbia N, Bulstra LF, Thaler R, Hovius SER, van Wijnen AJ, Shin AY. In Vivo Survival of Mesenchymal Stromal Cell-Enhanced Decellularized Nerve Grafts for Segmental Peripheral Nerve Reconstruction. J Hand Surg Am 2019;44:514.e1-514.e11. [PMID: 30301645 DOI: 10.1016/j.jhsa.2018.07.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
84 Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B. Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Experimental Neurology 2018;308:80-9. [DOI: 10.1016/j.expneurol.2018.07.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
85 Sandersen C, Ceusters J, Fourez A, Tosi I, Graide H, Lejeune JP, Serteyn D. Nerve Stimulator-guided Injection of Autologous Stem Cells Near the Equine Left Recurrent Laryngeal Nerve. J Vis Exp 2018. [PMID: 30320737 DOI: 10.3791/58023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
86 El-azab NE, El-mahalaway AM, Mostafa O, Sabry D. Histological and immunohistochemical study of the potential therapeutic impacts of bone marrow mesenchymal stem cells and exosomes for sciatic nerve crush injury model in rats. Journal of Histotechnology 2018;41:160-76. [DOI: 10.1080/01478885.2018.1505205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
87 Tung TH, Mackinnon SE. Stem cell-based approaches to enhance nerve regeneration and improve functional outcomes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2018;23:577-81. [PMID: 30138147 DOI: 10.1097/MOT.0000000000000569] [Reference Citation Analysis]
88 Park S, Jung N, Myung S, Choi Y, Chung KW, Choi BO, Jung SC. Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells into Schwann-Like Cells Improves Neuromuscular Function in a Mouse Model of Charcot-Marie-Tooth Disease Type 1A. Int J Mol Sci 2018;19:E2393. [PMID: 30110925 DOI: 10.3390/ijms19082393] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
89 Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, Lee G, Mao HQ, Jia X. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials 2018;181:347-59. [PMID: 30098570 DOI: 10.1016/j.biomaterials.2018.07.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 73] [Article Influence: 16.3] [Reference Citation Analysis]
90 Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A, Spurkland A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent Medicine 2018;5:1466404. [DOI: 10.1080/2331205x.2018.1466404] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
91 O'Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L, Grace N, Cameron G, Drake RAL, Sinden J, Phillips JB. An allogeneic 'off the shelf' therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci Rep 2018;8:2951. [PMID: 29440680 DOI: 10.1038/s41598-018-20927-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
92 Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018;13:764-74. [PMID: 29862995 DOI: 10.4103/1673-5374.232458] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
93 Mobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Current Opinion in Biomedical Engineering 2017;4:134-42. [DOI: 10.1016/j.cobme.2017.10.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 7.6] [Reference Citation Analysis]
94 Moattari M, Kouchesfehani HM, Kaka G, Sadraie SH, Naghdi M, Mansouri K. Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: A rat sciatic nerve model. J Chem Neuroanat 2018;88:46-54. [PMID: 29107096 DOI: 10.1016/j.jchemneu.2017.10.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
95 Chu C, Deng J, Cao C, Man Y, Qu Y. Evaluation of Epigallocatechin-3-gallate Modified Collagen Membrane and Concerns on Schwann Cells. Biomed Res Int 2017;2017:9641801. [PMID: 28894753 DOI: 10.1155/2017/9641801] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
96 Tezcan AH. Peripheral Nerve Injury and Current Treatment Strategies. Peripheral Nerve Regeneration - From Surgery to New Therapeutic Approaches Including Biomaterials and Cell-Based Therapies Development 2017. [DOI: 10.5772/intechopen.68345] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
97 Boriani F, Fazio N, Fotia C, Savarino L, Nicoli Aldini N, Martini L, Zini N, Bernardini M, Baldini N. A novel technique for decellularization of allogenic nerves and in vivo study of their use for peripheral nerve reconstruction: ALLOGENIC NERVE DECELLULARIZATION FOR PERIPHERAL NERVE RECONSTRUCTION. J Biomed Mater Res 2017;105:2228-40. [DOI: 10.1002/jbm.a.36090] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
98 Chen H, Du J, Zhang Y, Barnes K, Jia X. Establishing a reliable gait evaluation method for rodent studies. J Neurosci Methods 2017;283:92-100. [PMID: 28351803 DOI: 10.1016/j.jneumeth.2017.03.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]