BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pöttler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, Hofmann S, Wiest I, Jeschke U, Alexiou C, Janko C. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells. Int J Mol Sci 2015;16:26280-90. [PMID: 26540051 DOI: 10.3390/ijms161125960] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Ari F, Erkisa M, Pekel G, Erturk E, Buyukkoroglu G, Ulukaya E. Anticancer Potential of Albumin Bound Wnt/β‐Catenin Pathway Inhibitor Niclosamide in Breast Cancer Cells. ChemistrySelect 2021;6:7463-7475. [DOI: 10.1002/slct.202100819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Cattaneo AG. Safety and Utility of Nanomaterials on Reproduction and Development: An Update of Alternative Methods. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-63241-0_3] [Reference Citation Analysis]
3 Nagappan S, Aswin Jeno JG, Viveka R, Nakkeeran E. Recent advances in nanotechnology-based cell toxicity evaluation approaches relevant to biofuels and bioenergy applications. Nanomaterials 2021. [DOI: 10.1016/b978-0-12-822401-4.00004-0] [Reference Citation Analysis]
4 Bakhtari A, Nazari S, Alaee S, Kargar-Abarghouei E, Mesbah F, Mirzaei E, Molaei MJ. Effects of Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles on Mouse Embryo Development, Antioxidant Enzymes and Apoptosis Genes Expression, and Ultrastructure of Sperm, Oocytes and Granulosa Cells. Int J Fertil Steril 2020;14:161-70. [PMID: 33098381 DOI: 10.22074/ijfs.2020.6167] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. Nanomaterials (Basel) 2020;10:E1911. [PMID: 32992722 DOI: 10.3390/nano10101911] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
6 Afiune LAF, Ushirobira CY, Barbosa DPP, de Souza PEN, Leles MIG, Cunha-Filho M, Gelfuso GM, Soler MAG, Gratieri T. Novel iron oxide nanocarriers loading finasteride or dutasteride: Enhanced skin penetration for topical treatment of alopecia. Int J Pharm 2020;587:119709. [PMID: 32739394 DOI: 10.1016/j.ijpharm.2020.119709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
7 Tasso M, Lago Huvelle MA, Diaz Bessone I, Picco AS. Toxicity Assessment of Nanomaterials. Magnetic Nanoheterostructures 2020. [DOI: 10.1007/978-3-030-39923-8_13] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
8 Bruschi ML, de Toledo LDAS. Pharmaceutical Applications of Iron-Oxide Magnetic Nanoparticles. Magnetochemistry 2019;5:50. [DOI: 10.3390/magnetochemistry5030050] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
9 Fernández‐bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Evaluation of cytotoxicity and genotoxicity induced by oleic acid‐coated iron oxide nanoparticles in human astrocytes. Environ Mol Mutagen 2019;60:816-29. [DOI: 10.1002/em.22323] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
10 Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnology 2019;17:73. [PMID: 31151445 DOI: 10.1186/s12951-019-0506-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
11 Alabi OA, Silva AH, Purnhagen LRP, Souza GRR, de Mello Júnior LJ, Filippin-Monteiro FB, Dalmina M, Pittella F, Bakare AA, Creczynski-Pasa TB. Genetic, reproductive and oxidative damage in mice triggered by co-exposure of nanoparticles: From a hypothetical scenario to a real concern. Sci Total Environ 2019;660:1264-73. [PMID: 30743921 DOI: 10.1016/j.scitotenv.2019.01.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
12 Singh RP. Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility. Plant Nanobionics 2019. [DOI: 10.1007/978-3-030-16379-2_4] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Senapati VA, Kansara K, Shanker R, Dhawan A, Kumar A. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona. Mutagenesis 2017;32:479-90. [PMID: 29048576 DOI: 10.1093/mutage/gex028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
14 Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018;7:E46. [PMID: 29890753 DOI: 10.3390/antibiotics7020046] [Cited by in Crossref: 256] [Cited by in F6Publishing: 274] [Article Influence: 51.2] [Reference Citation Analysis]
15 Deda DK, Cardoso RM, Uchiyama MK, Pavani C, Toma SH, Baptista MS, Araki K. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Anal Bioanal Chem 2017;409:6663-75. [DOI: 10.1007/s00216-017-0622-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
16 Scsukova S, Bujnakova MA, Kiss A, Rollerova E. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol)- block-polylactide methyl ether (PEG-b-PLA) on steroid hormone secretion by porcine granulosa cells. Endocrine Regulations 2017;51:96-104. [DOI: 10.1515/enr-2017-0009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
17 Pöttler M, Fliedner A, Schreiber E, Janko C, Friedrich RP, Bohr C, Döllinger M, Alexiou C, Dürr S. Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics. Nanoscale Res Lett 2017;12:284. [PMID: 28431461 DOI: 10.1186/s11671-017-2045-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
18 Poller JM, Zaloga J, Schreiber E, Unterweger H, Janko C, Radon P, Eberbeck D, Trahms L, Alexiou C, Friedrich RP. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int J Nanomedicine 2017;12:3207-20. [PMID: 28458541 DOI: 10.2147/IJN.S132369] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 7.2] [Reference Citation Analysis]
19 Janko C, Pöttler M, Matuszak J, Unterweger H, Hornung A, Friedrich RP, Alexiou C. Innovative toxikologische Untersuchungsmethoden für Eisenoxidnanopartikel in der Nanomedizin. Chemie Ingenieur Technik 2017;89:244-51. [DOI: 10.1002/cite.201600077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
20 Javed Y, Ali K, Jamil Y. Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment: Factors Affecting Heat Generation Efficiency. Complex Magnetic Nanostructures 2017. [DOI: 10.1007/978-3-319-52087-2_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
21 Buliaková B, Mesárošová M, Bábelová A, Šelc M, Némethová V, Šebová L, Rázga F, Ursínyová M, Chalupa I, Gábelová A. Surface-modified magnetite nanoparticles act as aneugen-like spindle poison. Nanomedicine 2017;13:69-80. [PMID: 27593490 DOI: 10.1016/j.nano.2016.08.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]