BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grix T, Ruppelt A, Thomas A, Amler AK, Noichl BP, Lauster R, Kloke L. Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications. Genes (Basel) 2018;9:E176. [PMID: 29565814 DOI: 10.3390/genes9040176] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Jin B, Liu Y, Du S, Sang X, Yang H, Mao Y. Current trends and research topics regarding liver 3D bioprinting: A bibliometric analysis research. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1047524] [Reference Citation Analysis]
2 Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1043117] [Reference Citation Analysis]
3 Li H, Dai J, Wang Z, Zheng H, Li W, Wang M, Cheng F. Digital light processing (DLP)‐based (bio)printing strategies for tissue modeling and regeneration. Aggregate 2022. [DOI: 10.1002/agt2.270] [Reference Citation Analysis]
4 Mcduffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022;13:999366. [DOI: 10.3389/fmicb.2022.999366] [Reference Citation Analysis]
5 Heydari Z, Pooyan P, Bikmulina P, Pozdnyakov A, Fomin V, Seydi H, Shpichka A, Timashev P, Vosough M. Mimicking the liver function in micro-patterned units: Challenges and perspectives in 3D bioprinting. Bioprinting 2022;27:e00208. [DOI: 10.1016/j.bprint.2022.e00208] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Jo Y, Hwang DG, Kim M, Yong U, Jang J. Bioprinting-assisted tissue assembly to generate organ substitutes at scale. Trends Biotechnol 2022:S0167-7799(22)00170-6. [PMID: 35907704 DOI: 10.1016/j.tibtech.2022.07.001] [Reference Citation Analysis]
7 Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022;14:2449. [PMID: 35746024 DOI: 10.3390/polym14122449] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
8 Shuchat S, Yossifon G, Huleihel M. Perfusion in Organ-on-Chip Models and Its Applicability to the Replication of Spermatogenesis In Vitro. Int J Mol Sci 2022;23:5402. [PMID: 35628214 DOI: 10.3390/ijms23105402] [Reference Citation Analysis]
9 Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving Printability of Digital-Light-Processing 3D Bioprinting via Photoabsorber Pigment Adjustment. Int J Mol Sci 2022;23:5428. [PMID: 35628238 DOI: 10.3390/ijms23105428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Shopperly LK, Spinnen J, Krüger J, Endres M, Sittinger M, Lam T, Kloke L, Dehne T. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. J Biomed Mater Res. [DOI: 10.1002/jbm.b.35079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Li Q, Gong Y, Zang J, Zhang Y, Sun Y, Sun G. Measurement Method of Civil Engineering Complexity Structure Based on Logical Equivalent Model. Mathematical Problems in Engineering 2022;2022:1-13. [DOI: 10.1155/2022/6782822] [Reference Citation Analysis]
12 Vargas R, Egurbide-Sifre A, Medina L. Organ-on-a-Chip systems for new drugs development. ADMET DMPK 2021;9:111-41. [PMID: 35299767 DOI: 10.5599/admet.942] [Reference Citation Analysis]
13 Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022;13:829717. [PMID: 35283862 DOI: 10.3389/fmicb.2022.829717] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Kim D, Kim M, Lee J, Jang J. Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues. Front Bioeng Biotechnol 2022;10:764682. [PMID: 35237569 DOI: 10.3389/fbioe.2022.764682] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022. [PMID: 35006284 DOI: 10.1007/s00204-021-03212-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
16 Tsai HI, Wu Y, Liu X, Xu Z, Liu L, Wang C, Zhang H, Huang Y, Wang L, Zhang W, Su D, Khan FU, Zhu X, Yang R, Pang Y, Eriksson JE, Zhu H, Wang D, Jia B, Cheng F, Chen H. Engineered Small Extracellular Vesicles as a FGL1/PD-L1 Dual-Targeting Delivery System for Alleviating Immune Rejection. Adv Sci (Weinh) 2022;9:e2102634. [PMID: 34738731 DOI: 10.1002/advs.202102634] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Maharjan S, Bonilla D, Zhang YS. 3D Bioprinting for Liver Regeneration. 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine 2022. [DOI: 10.1016/b978-0-12-824552-1.00010-4] [Reference Citation Analysis]
18 Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. Adv Mater 2021;33:e2104730. [PMID: 34596923 DOI: 10.1002/adma.202104730] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 29.0] [Reference Citation Analysis]
19 Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, Sebastian S, Bonilla D, Gandolfo S, Boukataya Y, Siadat SM, Zhang YS, Livermore C. Customizable Microfluidic Origami Liver‐on‐a‐Chip (oLOC). Adv Materials Technologies 2022;7:2100677. [DOI: 10.1002/admt.202100677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Pun S, Haney LC, Barrile R. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. Micromachines (Basel) 2021;12:1250. [PMID: 34683301 DOI: 10.3390/mi12101250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Dellaquila A, Le Bao C, Letourneur D, Simon-Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Adv Sci (Weinh) 2021;8:e2100798. [PMID: 34351702 DOI: 10.1002/advs.202100798] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
22 Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021;:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
23 Song Y, Overmass M, Fan J, Hodge C, Sutton G, Lovicu FJ, You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front Surg 2021;8:639500. [PMID: 34513910 DOI: 10.3389/fsurg.2021.639500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Thakare K, Jerpseth L, Pei Z, Elwany A, Quek F, Qin H. Bioprinting of Organ-on-Chip Systems: A Literature Review from a Manufacturing Perspective. JMMP 2021;5:91. [DOI: 10.3390/jmmp5030091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
25 Sampson KL, Deore B, Go A, Nayak MA, Orth A, Gallerneault M, Malenfant PRL, Paquet C. Multimaterial Vat Polymerization Additive Manufacturing. ACS Appl Polym Mater 2021;3:4304-24. [DOI: 10.1021/acsapm.1c00262] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
26 Hagenbuchner J, Nothdurfter D, Ausserlechner MJ. 3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays Biochem 2021;65:417-27. [PMID: 34328185 DOI: 10.1042/EBC20200153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Aazmi A, Zhou H, Li Y, Yu M, Xu X, Wu Y, Ma L, Zhang B, Yang H. Engineered Vasculature for Organ-on-a-Chip Systems. Engineering 2021. [DOI: 10.1016/j.eng.2021.06.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
28 Grunewald L, Lam T, Andersch L, Klaus A, Schwiebert S, Winkler A, Gauert A, Heeren-Hagemann AI, Astrahantseff K, Klironomos F, Thomas A, Deubzer HE, Henssen AG, Eggert A, Schulte JH, Anders K, Kloke L, Künkele A. A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization. Front Immunol 2021;12:689697. [PMID: 34267756 DOI: 10.3389/fimmu.2021.689697] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
29 Ren Y, Yang X, Ma Z, Sun X, Zhang Y, Li W, Yang H, Qiang L, Yang Z, Liu Y, Deng C, Zhou L, Wang T, Lin J, Li T, Wu T, Wang J. Developments and Opportunities for 3D Bioprinted Organoids. Int J Bioprint 2021;7:364. [PMID: 34286150 DOI: 10.18063/ijb.v7i3.364] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
30 Hwang DG, Choi YM, Jang J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Architecture and Pathophysiology for in vitro Studies. Front Bioeng Biotechnol 2021;9:685507. [PMID: 34136473 DOI: 10.3389/fbioe.2021.685507] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
31 Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 2021;11:787. [PMID: 34071060 DOI: 10.3390/biom11060787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
32 Carvalho V, Gonçalves I, Lage T, Rodrigues RO, Minas G, Teixeira SFCF, Moita AS, Hori T, Kaji H, Lima RA. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors (Basel) 2021;21:3304. [PMID: 34068811 DOI: 10.3390/s21093304] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
33 Li M, Song X, Jin S, Ye K. 3D tumor model biofabrication. Bio-des Manuf 2021;4:526-40. [DOI: 10.1007/s42242-021-00134-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
34 Agarwal T, Banerjee D, Konwarh R, Esworthy T, Kumari J, Onesto V, Das P, Lee BH, Wagener FADTG, Makvandi P, Mattoli V, Ghosh SK, Maiti TK, Zhang LG, Ozbolat IT. Recent advances in bioprinting technologies for engineering hepatic tissue. Mater Sci Eng C Mater Biol Appl 2021;123:112013. [PMID: 33812632 DOI: 10.1016/j.msec.2021.112013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
35 Amler AK, Thomas A, Tüzüner S, Lam T, Geiger MA, Kreuder AE, Palmer C, Nahles S, Lauster R, Kloke L. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep 2021;11:4876. [PMID: 33649412 DOI: 10.1038/s41598-021-84483-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
36 Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021;9:626805. [PMID: 33732695 DOI: 10.3389/fcell.2021.626805] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 23.0] [Reference Citation Analysis]
37 Donoghue L, Nguyen KT, Graham C, Sethu P. Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. Micromachines (Basel) 2021;12:139. [PMID: 33525451 DOI: 10.3390/mi12020139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 Amler AK, Dinkelborg PH, Schlauch D, Spinnen J, Stich S, Lauster R, Sittinger M, Nahles S, Heiland M, Kloke L, Rendenbach C, Beck-Broichsitter B, Dehne T. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. Int J Mol Sci 2021;22:E796. [PMID: 33466904 DOI: 10.3390/ijms22020796] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
39 Alomari M. Differentiation of Stem Cells into Hepatocyte Lineage: In Vitro Cell Culture, In Vivo Transplantation in Animal Models. Advances in Application of Stem Cells: From Bench to Clinics 2021. [DOI: 10.1007/978-3-030-78101-9_6] [Reference Citation Analysis]
40 Saygili E, Draz MS. 3D Printable Gel-Inks for Microbes and Microbial Structures. 3D printable Gel-inks for Tissue Engineering 2021. [DOI: 10.1007/978-981-16-4667-6_10] [Reference Citation Analysis]
41 Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021;9:5385-413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
42 Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2021;269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
43 Zhang Y, Yang N, Xie L, Shu F, Shi Q, Shaheen N. A New 3D Cultured Liver Chip and Real-Time Monitoring System Based on Microfluidic Technology. Micromachines (Basel) 2020;11:E1118. [PMID: 33339350 DOI: 10.3390/mi11121118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
44 Ma L, Wu Y, Li Y, Aazmi A, Zhou H, Zhang B, Yang H. Current Advances on 3D-Bioprinted Liver Tissue Models. Adv Healthc Mater 2020;9:e2001517. [PMID: 33073522 DOI: 10.1002/adhm.202001517] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
45 Milner E, Ainsworth M, Mcdonough M, Stevens B, Buehrer J, Delzell R, Wilson C, Barnhill J. Emerging Three-Dimensional Hepatic Models in Relation to Traditional Two-Dimensional In Vitro Assays for Evaluating Drug Metabolism and Hepatoxicity. Medicine in Drug Discovery 2020;8:100060. [DOI: 10.1016/j.medidd.2020.100060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep 2020;7:1578-87. [PMID: 33304827 DOI: 10.1016/j.toxrep.2020.11.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
47 Koban R, Lam T, Schwarz F, Kloke L, Bürge S, Ellerbrok H, Neumann M. Simplified Bioprinting-Based 3D Cell Culture Infection Models for Virus Detection. Viruses 2020;12:E1298. [PMID: 33198291 DOI: 10.3390/v12111298] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Gori M, Giannitelli SM, Torre M, Mozetic P, Abbruzzese F, Trombetta M, Traversa E, Moroni L, Rainer A. Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cell-Laden Thermogel: An Effective Tool to Assess Drug-Induced Hepatotoxic Response. Adv Healthc Mater 2020;9:e2001163. [PMID: 32940019 DOI: 10.1002/adhm.202001163] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
49 Thomas A, Orellano I, Lam T, Noichl B, Geiger MA, Amler AK, Kreuder AE, Palmer C, Duda G, Lauster R, Kloke L. Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography. Acta Biomater 2020;117:121-32. [PMID: 32980542 DOI: 10.1016/j.actbio.2020.09.033] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]
50 Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. Adv Funct Mater 2020;30:1909553. [PMID: 33390875 DOI: 10.1002/adfm.201909553] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
51 Kreuder AE, Bolaños-Rosales A, Palmer C, Thomas A, Geiger MA, Lam T, Amler AK, Markert UR, Lauster R, Kloke L. Inspired by the human placenta: a novel 3D bioprinted membrane system to create barrier models. Sci Rep 2020;10:15606. [PMID: 32973223 DOI: 10.1038/s41598-020-72559-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
52 Olgasi C, Cucci A, Follenzi A. iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020;21:E6215. [PMID: 32867371 DOI: 10.3390/ijms21176215] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
53 Yang S, Shi J, Yang J, Feng C, Tang H. Fluid-Structure Interaction Analysis of Perfusion Process of Vascularized Channels within Hydrogel Matrix Based on Three-Dimensional Printing. Polymers (Basel) 2020;12:E1898. [PMID: 32847066 DOI: 10.3390/polym12091898] [Reference Citation Analysis]
54 Priyadarshini BM, Dikshit V, Zhang Y. 3D-printed Bioreactors for In Vitro Modeling and Analysis. Int J Bioprint 2020;6:267. [PMID: 33088992 DOI: 10.18063/ijb.v6i4.267] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
55 Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing. Adv Healthc Mater 2020;9:e2000156. [PMID: 32529775 DOI: 10.1002/adhm.202000156] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 28.5] [Reference Citation Analysis]
56 Wang Z, He X, Qiao H, Chen P. Global Trends of Organoid and Organ-On-a-Chip in the Past Decade: A Bibliometric and Comparative Study. Tissue Engineering Part A 2020;26:656-71. [DOI: 10.1089/ten.tea.2019.0251] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
57 Saygili E, Dogan-gurbuz AA, Yesil-celiktas O, Draz MS. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020;18:e00071. [DOI: 10.1016/j.bprint.2019.e00071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
58 Kutlehria S, Dinh TC, Bagde A, Patel N, Gebeyehu A, Singh M. High-throughput 3D bioprinting of corneal stromal equivalents. J Biomed Mater Res B Appl Biomater 2020;108:2981-94. [PMID: 32386281 DOI: 10.1002/jbm.b.34628] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
59 Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020;120:10662-94. [DOI: 10.1021/acs.chemrev.9b00812] [Cited by in Crossref: 117] [Cited by in F6Publishing: 125] [Article Influence: 58.5] [Reference Citation Analysis]
60 Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Materials Science and Engineering: C 2020;109:110625. [DOI: 10.1016/j.msec.2020.110625] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 28.5] [Reference Citation Analysis]
61 Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020;21:1037-59. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
62 Ng WL, Lee JM, Zhou M, Chen YW, Lee KA, Yeong WY, Shen YF. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 2020;12:022001. [PMID: 31822648 DOI: 10.1088/1758-5090/ab6034] [Cited by in Crossref: 107] [Cited by in F6Publishing: 130] [Article Influence: 53.5] [Reference Citation Analysis]
63 Ramos T, Moroni L. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication-A Year in Review. Tissue Eng Part C Methods 2020;26:91-106. [PMID: 31856696 DOI: 10.1089/ten.TEC.2019.0344] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
64 Dehne E, Erfurth H, Muhsmann A, Marx U. Automation and opportunities for industry scale-up of microphysiological systems. Organ-on-a-chip 2020. [DOI: 10.1016/b978-0-12-817202-5.00014-0] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Sheoran AJ, Kumar H, Arora PK, Moona G. Bio-Medical applications of Additive Manufacturing: A Review. Procedia Manufacturing 2020;51:663-70. [DOI: 10.1016/j.promfg.2020.10.093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
66 Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. Biomicrofluidics 2019;13:061503. [PMID: 31768197 DOI: 10.1063/1.5121200] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
67 Lee JH, Ho KL, Fan SK. Liver microsystems in vitro for drug response. J Biomed Sci 2019;26:88. [PMID: 31660980 DOI: 10.1186/s12929-019-0575-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
68 Collins SD, Yuen G, Tu T, Budzinska MA, Spring K, Bryant K, Shackel NA; Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Department of Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany, German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Australia, Liverpool Clinical School, Western Sydney University, Liverpool, Australia, Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Australia, Liverpool Clinical School, Western Sydney University, Liverpool, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia. In Vitro Models of the Liver: Disease Modeling, Drug Discovery and Clinical Applications. In: Tirnitz-parker JE, editor. Hepatocellular Carcinoma. Codon Publications; 2019. pp. 47-67. [DOI: 10.15586/hepatocellularcarcinoma.2019.ch3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
69 Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, Zhang X. Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. Micromachines (Basel) 2019;10:E676. [PMID: 31591365 DOI: 10.3390/mi10100676] [Cited by in Crossref: 83] [Cited by in F6Publishing: 88] [Article Influence: 27.7] [Reference Citation Analysis]
70 Zhou Y, Shen JX, Lauschke VM. Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. Front Pharmacol 2019;10:1093. [PMID: 31616302 DOI: 10.3389/fphar.2019.01093] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
71 Ji S, Almeida E, Guvendiren M. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater 2019;95:214-24. [PMID: 30831327 DOI: 10.1016/j.actbio.2019.02.038] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 20.0] [Reference Citation Analysis]
72 Freeman S, Ramos R, Alexis Chando P, Zhou L, Reeser K, Jin S, Soman P, Ye K. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 2019;95:152-64. [PMID: 31271883 DOI: 10.1016/j.actbio.2019.06.052] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
73 Fetah K, Tebon P, Goudie MJ, Eichenbaum J, Ren L, Barros N, Nasiri R, Ahadian S, Ashammakhi N, Dokmeci MR, Khademhosseini A. The emergence of 3D bioprinting in organ-on-chip systems. Prog Biomed Eng 2019;1:012001. [DOI: 10.1088/2516-1091/ab23df] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 16.3] [Reference Citation Analysis]
74 Ahangar P, Cooke ME, Weber MH, Rosenzweig DH. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences 2019;9:1713. [DOI: 10.3390/app9081713] [Cited by in Crossref: 124] [Cited by in F6Publishing: 130] [Article Influence: 41.3] [Reference Citation Analysis]
75 Mehrotra S, Moses JC, Bandyopadhyay A, Mandal BB. 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges. ACS Appl Bio Mater 2019;2:1385-405. [DOI: 10.1021/acsabm.9b00073] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
76 Lam T, Dehne T, Krüger JP, Hondke S, Endres M, Thomas A, Lauster R, Sittinger M, Kloke L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res B Appl Biomater 2019;107:2649-57. [PMID: 30860678 DOI: 10.1002/jbm.b.34354] [Cited by in Crossref: 83] [Cited by in F6Publishing: 88] [Article Influence: 27.7] [Reference Citation Analysis]
77 Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho DW. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 2019;11:025001. [PMID: 30566930 DOI: 10.1088/1758-5090/aaf9fa] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 26.3] [Reference Citation Analysis]
78 Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting Technologies in Tissue Engineering. Current Applications of Pharmaceutical Biotechnology 2019. [DOI: 10.1007/10_2019_108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
79 Duelen R, Corvelyn M, Tortorella I, Leonardi L, Chai YC, Sampaolesi M. Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development. Introduction to Biotech Entrepreneurship: From Idea to Business 2019. [DOI: 10.1007/978-3-030-22141-6_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Lerman MJ, Lembong J, Gillen G, Fisher JP. 3D printing in cell culture systems and medical applications. Appl Phys Rev 2018;5:041109. [PMID: 32550961 DOI: 10.1063/1.5046087] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
81 Hiller T, Berg J, Elomaa L, Röhrs V, Ullah I, Schaar K, Dietrich AC, Al-Zeer MA, Kurtz A, Hocke AC, Hippenstiel S, Fechner H, Weinhart M, Kurreck J. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. Int J Mol Sci 2018;19:E3129. [PMID: 30321994 DOI: 10.3390/ijms19103129] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 17.8] [Reference Citation Analysis]
82 Retting K, Carter D, Crogan-grundy C, Khatiwala C, Norona L, Paffenroth E, Hanumegowda U, Chen A, Hazelwood L, Lehman-mckeeman L, Presnell S. Modeling Liver Biology and the Tissue Response to Injury in Bioprinted Human Liver Tissues. Applied In Vitro Toxicology 2018;4:288-303. [DOI: 10.1089/aivt.2018.0015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]