1 |
Huynh LM, Hwang Y, Taylor O, Baine MJ. The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature. Diagnostics 2023;13:1128. [DOI: 10.3390/diagnostics13061128] [Reference Citation Analysis]
|
2 |
Chiacchio G, Castellani D, Nedbal C, De Stefano V, Brocca C, Tramanzoli P, Galosi AB, Donalisio da Silva R, Teoh JY, Tiong HY, Naik N, Somani BK, Merseburger AS, Gauhar V. Radiomics vs radiologist in prostate cancer. Results from a systematic review. World J Urol 2023. [PMID: 36867239 DOI: 10.1007/s00345-023-04305-2] [Reference Citation Analysis]
|
3 |
Fields BKK, Demirjian NL, Cen SY, Varghese BA, Hwang DH, Lei X, Desai B, Duddalwar V, Matcuk GR Jr. Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach. Mol Imaging Biol 2023. [PMID: 36695966 DOI: 10.1007/s11307-023-01803-y] [Reference Citation Analysis]
|
4 |
Rouvière O, Jaouen T, Baseilhac P, Benomar ML, Escande R, Crouzet S, Souchon R. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts? – A systematic review. Diagnostic and Interventional Imaging 2022. [DOI: 10.1016/j.diii.2022.11.005] [Reference Citation Analysis]
|
5 |
Wiratchawa K, Wanna Y, Cha-in S, Aphinives C, Aphinives P, Intharah T. Training Deep CNN's to Detect Prostate Cancer Lesion with Small Training Data. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC) 2022. [DOI: 10.1109/itc-cscc55581.2022.9895044] [Reference Citation Analysis]
|
6 |
Bleker J, Kwee TC, Yakar D. Quality of Multicenter Studies Using MRI Radiomics for Diagnosing Clinically Significant Prostate Cancer: A Systematic Review. Life (Basel) 2022;12:946. [PMID: 35888036 DOI: 10.3390/life12070946] [Reference Citation Analysis]
|
7 |
Telecan T, Andras I, Crisan N, Giurgiu L, Căta ED, Caraiani C, Lebovici A, Boca B, Balint Z, Diosan L, Lupsor-platon M. More than Meets the Eye: Using Textural Analysis and Artificial Intelligence as Decision Support Tools in Prostate Cancer Diagnosis—A Systematic Review. JPM 2022;12:983. [DOI: 10.3390/jpm12060983] [Reference Citation Analysis]
|
8 |
Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X, Li L. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Contrast Media Mol Imaging 2021;2021:7830909. [PMID: 35024015 DOI: 10.1155/2021/7830909] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Sushentsev N, Moreira Da Silva N, Yeung M, Barrett T, Sala E, Roberts M, Rundo L. Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review. Insights Imaging 2022;13. [DOI: 10.1186/s13244-022-01199-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
10 |
Rouvière O, Souchon R, Lartizien C, Mansuy A, Magaud L, Colom M, Dubreuil-Chambardel M, Debeer S, Jaouen T, Duran A, Rippert P, Riche B, Monini C, Vlaeminck-Guillem V, Haesebaert J, Rabilloud M, Crouzet S. Detection of ISUP ≥2 prostate cancers using multiparametric MRI: prospective multicentre assessment of the non-inferiority of an artificial intelligence system as compared to the PI-RADS V.2.1 score (CHANGE study). BMJ Open 2022;12:e051274. [PMID: 35140147 DOI: 10.1136/bmjopen-2021-051274] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Ferro M, de Cobelli O, Musi G, Del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022;14:17562872221109020. [PMID: 35814914 DOI: 10.1177/17562872221109020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
12 |
Castillo T JM, Arif M, Starmans MPA, Niessen WJ, Bangma CH, Schoots IG, Veenland JF. Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics. Cancers (Basel) 2021;14:12. [PMID: 35008177 DOI: 10.3390/cancers14010012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
13 |
Bleker J, Yakar D, van Noort B, Rouw D, de Jong IJ, Dierckx RAJO, Kwee TC, Huisman H. Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer. Insights Imaging 2021;12:150. [PMID: 34674058 DOI: 10.1186/s13244-021-01099-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021;22:9971. [PMID: 34576134 DOI: 10.3390/ijms22189971] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
|
15 |
Doran SJ, Kumar S, Orton M, d'Arcy J, Kwaks F, O'Flynn E, Ahmed Z, Downey K, Dowsett M, Turner N, Messiou C, Koh DM. "Real-world" radiomics from multi-vendor MRI: an original retrospective study on the prediction of nodal status and disease survival in breast cancer, as an exemplar to promote discussion of the wider issues. Cancer Imaging 2021;21:37. [PMID: 34016188 DOI: 10.1186/s40644-021-00406-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|