BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou ΜI, Karamanos NK. Epigenetic Alterations in Triple-Negative Breast Cancer-The Critical Role of Extracellular Matrix. Cancers (Basel) 2021;13:713. [PMID: 33572395 DOI: 10.3390/cancers13040713] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Li Y, Yuan M, Song Q, Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol 2023;12. [DOI: 10.3389/fonc.2022.1060495] [Reference Citation Analysis]
2 Piperigkou Z, Karamanos NK. Evaluating the Effects of MicroRNAs on Proteoglycans and Matrix Constituents' Expression and Functional Properties. Methods Mol Biol 2023;2619:257-71. [PMID: 36662476 DOI: 10.1007/978-1-0716-2946-8_19] [Reference Citation Analysis]
3 Ihle CL, Wright-hobart SJ, Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacology & Therapeutics 2022;239:108280. [DOI: 10.1016/j.pharmthera.2022.108280] [Reference Citation Analysis]
4 Gao T, Sang X, Huang X, Gu P, Liu J, Liu Y, Zhang N. Macrophage-camouflaged epigenetic nanoinducers enhance chemoimmunotherapy in triple negative breast cancer. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.018] [Reference Citation Analysis]
5 Flores-contreras EA, González-gonzález RB, González-gonzález E, Parra-saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. Journal of Drug Delivery Science and Technology 2022;77:103924. [DOI: 10.1016/j.jddst.2022.103924] [Reference Citation Analysis]
6 Alghazali MW, Al-Hetty HRAK, Ali ZMM, Saleh MM, Suleiman AA, Jalil AT. Non-coding RNAs, another side of immune regulation during triple-negative breast cancer. Pathol Res Pract 2022;239:154132. [PMID: 36183439 DOI: 10.1016/j.prp.2022.154132] [Reference Citation Analysis]
7 Yao Q, Hou W, Chen J, Bai Y, Long M, Huang X, Zhao C, Zhou L, Niu D. Comparative proteomic and clinicopathological analysis of breast adenoid cystic carcinoma and basal-like triple-negative breast cancer. Front Med 2022;9. [DOI: 10.3389/fmed.2022.943887] [Reference Citation Analysis]
8 Piperigkou Z, Koutsandreas A, Franchi M, Zolota V, Kletsas D, Passi A, Karamanos NK. ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo. Front Oncol 2022;12:917633. [PMID: 35719919 DOI: 10.3389/fonc.2022.917633] [Reference Citation Analysis]
9 Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F, Chen D. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal 2022;20:92. [PMID: 35715860 DOI: 10.1186/s12964-022-00888-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Catalano A, Iacopetta D, Ceramella J, Mariconda A, Rosano C, Scumaci D, Saturnino C, Longo P, Sinicropi MS. New Achievements for the Treatment of Triple-Negative Breast Cancer. Applied Sciences 2022;12:5554. [DOI: 10.3390/app12115554] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Maccallini C, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L, Amoroso R. HDAC Inhibitors for the Therapy of Triple Negative Breast Cancer. Pharmaceuticals 2022;15:667. [DOI: 10.3390/ph15060667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhang YL, Deng L, Liao L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. Chromatin complexes subunit BAP18 promotes triple-negative breast cancer progression through transcriptional activation of oncogene S100A9. Cell Death Dis 2022;13:408. [PMID: 35484101 DOI: 10.1038/s41419-022-04785-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Santos IP, Martins CB, Batista de Carvalho LAE, Marques MPM, Batista de Carvalho ALM. Who's Who? Discrimination of Human Breast Cancer Cell Lines by Raman and FTIR Microspectroscopy. Cancers (Basel) 2022;14:452. [PMID: 35053613 DOI: 10.3390/cancers14020452] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Franchi M, Masola V, Karamanos K, Franchi L, Kyriakopoulou K, Onisto M, Cappadone C. Basement Membrane, Collagen, and Fibronectin: Physical Interactions with Cancer Cells. The Extracellular Matrix and the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-99708-3_10] [Reference Citation Analysis]
16 Lepedda AJ, Nieddu G, Karamanos N, Formato M. Circulating Proteoglycans/Glycosaminoglycans as Cancer Biomarkers. The Extracellular Matrix and the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-99708-3_6] [Reference Citation Analysis]
17 Piperigkou Z, Manou D, Bainantzou D, Zolota V, Papakonstantinou Ε, Theocharis AD, Karamanos NK. The microRNA-Extracellular Matrix Interplay in Breast Cancer. The Extracellular Matrix and the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-99708-3_16] [Reference Citation Analysis]
18 Piperigkou Z, Karamanos NK. Matrix Effectors and Cancer. Cancers (Basel) 2021;14:200. [PMID: 35008364 DOI: 10.3390/cancers14010200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Hernández-Oliveras A, Zarain-Herzberg Á. Expression and associated epigenetic mechanisms of the Ca2+-signaling genes in breast cancer subtypes and epithelial-to-mesenchymal transition. J Cell Commun Signal 2021. [PMID: 34762262 DOI: 10.1007/s12079-021-00655-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Onyeisi JOS, Greve B, Espinoza-Sánchez NA, Kiesel L, Lopes CC, Götte M. microRNA-140-3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecan-4. J Cell Biochem 2021. [PMID: 34180077 DOI: 10.1002/jcb.30071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]