BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Sanchez-Correa B, Guerrero B, Bergua JM, Arcos MJ, Bañas H, Casas-Avilés I, Sanchez-Garcia J, Serrano J, Martin C, Duran E, Alonso C, Solana R, Tarazona R. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia. Cancers (Basel) 2020;12:E2171. [PMID: 32764229 DOI: 10.3390/cancers12082171] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Feng S, Isayev O, Werner J, Bazhin AV. CD96 as a Potential Immune Regulator in Cancers. Int J Mol Sci 2023;24. [PMID: 36674817 DOI: 10.3390/ijms24021303] [Reference Citation Analysis]
2 Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022;18:1217-37. [PMID: 36154551 DOI: 10.1080/1744666X.2022.2128107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zúñiga TM, Baker FL, Smith KA, Batatinha H, Lau B, Gustafson MP, Katsanis E, Simpson RJ. Acute exercise mobilizes NKT-like cells with a cytotoxic transcriptomic profile but does not augment the potency of cytokine-induced killer (CIK) cells. Front Immunol 2022;13:938106. [DOI: 10.3389/fimmu.2022.938106] [Reference Citation Analysis]
4 Wu F, Yang H, Xu X, Ren C, Zheng Y, Zhang H, Cai B, Qiu R, Ren W, Quan R, Stockinger H. CD96 Downregulation Promotes the Immune Response of CD4 T Cells and Associates with Ankylosing Spondylitis. BioMed Research International 2022;2022:1-11. [DOI: 10.1155/2022/3946754] [Reference Citation Analysis]
5 Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022;12:844260. [PMID: 35433470 DOI: 10.3389/fonc.2022.844260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 El Menshawy N, Selim T, Mohamed A, Ebrahiem MA, Farag NA, Saifeldein ER. Prognostic Impact of Poliovirus Receptor Expression (PVR) (CD155) in Context to FLT3-ITD and NPM1 Mutation Status at Egyptian Acute Myeloid Leukemia. JBM 2022;10:38-52. [DOI: 10.4236/jbm.2022.107003] [Reference Citation Analysis]
7 Brauneck F, Seubert E, Wellbrock J, Schulze Zur Wiesch J, Duan Y, Magnus T, Bokemeyer C, Koch-Nolte F, Menzel S, Fiedler W. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Int J Mol Sci 2021;22:12919. [PMID: 34884723 DOI: 10.3390/ijms222312919] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zeng X, Yao D, Liu L, Zhang Y, Lai J, Zhong J, Zha X, Lu Y, Jin Z, Chen S, Li Y, Xu L. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT+ NK cells may be related to poor outcome in acute myeloid leukemia. Asia Pac J Clin Oncol 2021. [PMID: 34811925 DOI: 10.1111/ajco.13723] [Reference Citation Analysis]
9 Chashchina A, Märklin M, Hinterleitner C, Salih HR, Heitmann JS, Klimovich B. DNAM-1/CD226 is functionally expressed on acute myeloid leukemia (AML) cells and is associated with favorable prognosis. Sci Rep 2021;11:18012. [PMID: 34504191 DOI: 10.1038/s41598-021-97400-6] [Reference Citation Analysis]
10 Poggi A, Villa F, Fernadez JLC, Costa D, Zocchi MR, Benelli R. Three-Dimensional Culture Models to Study Innate Anti-Tumor Immune Response: Advantages and Disadvantages. Cancers (Basel) 2021;13:3417. [PMID: 34298630 DOI: 10.3390/cancers13143417] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, Seiffert S, Weyh MK, Köhl U, Sack U, Boldt A. Detection of Immune Checkpoint Receptors - A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021;12:694055. [PMID: 34276685 DOI: 10.3389/fimmu.2021.694055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
12 Machuldova A, Holubova M, Caputo VS, Cedikova M, Jindra P, Houdova L, Pitule P. Role of Polymorphisms of NKG2D Receptor and Its Ligands in Acute Myeloid Leukemia and Human Stem Cell Transplantation. Front Immunol 2021;12:651751. [PMID: 33868289 DOI: 10.3389/fimmu.2021.651751] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Gurney M, O'Dwyer M. Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers (Basel) 2021;13:1568. [PMID: 33805422 DOI: 10.3390/cancers13071568] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 Swatler J, Turos-Korgul L, Kozlowska E, Piwocka K. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers (Basel) 2021;13:1203. [PMID: 33801964 DOI: 10.3390/cancers13061203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]