1 |
Pitzer CR, Paez HG, Alway SE. The Contribution of Tumor Derived Exosomes to Cancer Cachexia. Cells 2023;12. [PMID: 36672227 DOI: 10.3390/cells12020292] [Reference Citation Analysis]
|
2 |
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022;10:960341. [DOI: 10.3389/fcell.2022.960341] [Reference Citation Analysis]
|
3 |
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022;11:2293. [PMID: 35892590 DOI: 10.3390/cells11152293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Jiang Y, Ghias K, Gupta S, Gupta A. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors. Life (Basel) 2021;11:1439. [PMID: 34947970 DOI: 10.3390/life11121439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
5 |
Yehia R, Schaalan M, Abdallah DM, Saad AS, Sarhan N, Saleh S. Impact of TNF-α Gene Polymorphisms on Pancreatic and Non-Small Cell Lung Cancer-Induced Cachexia in Adult Egyptian Patients: A Focus on Pathogenic Trajectories. Front Oncol 2021;11:783231. [PMID: 34900737 DOI: 10.3389/fonc.2021.783231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
6 |
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021;10:3035. [PMID: 34831256 DOI: 10.3390/cells10113035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
7 |
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021;22:9007. [PMID: 34445710 DOI: 10.3390/ijms22169007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
8 |
Ding Z, Sun D, Han J, Shen L, Yang F, Sah S, Sui X, Wu G. Novel noncoding RNA CircPTK2 regulates lipolysis and adipogenesis in cachexia. Mol Metab 2021;53:101310. [PMID: 34311131 DOI: 10.1016/j.molmet.2021.101310] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
9 |
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021;10:3090-110. [PMID: 35116619 DOI: 10.21037/tcr-20-2530] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
10 |
Jin F, Xu D. A fluorescent microarray platform based on catalytic hairpin assembly for MicroRNAs detection. Anal Chim Acta 2021;1173:338666. [PMID: 34172148 DOI: 10.1016/j.aca.2021.338666] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
11 |
Kottorou A, Dimitrakopoulos FI, Tsezou A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl Oncol 2021;14:101101. [PMID: 33915516 DOI: 10.1016/j.tranon.2021.101101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
|
12 |
Cao Z, Zhao K, Jose I, Hoogenraad NJ, Osellame LD. Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci 2021;22:4501. [PMID: 33925872 DOI: 10.3390/ijms22094501] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
|
13 |
Han J, Shen L, Zhan Z, Liu Y, Zhang C, Guo R, Luo Y, Xie Z, Feng Y, Wu G. The long noncoding RNA MALAT1 modulates adipose loss in cancer-associated cachexia by suppressing adipogenesis through PPAR-γ. Nutr Metab (Lond) 2021;18:27. [PMID: 33691715 DOI: 10.1186/s12986-021-00557-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Wang Y. circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis. Cancer Cell Int 2021;21:85. [PMID: 33536022 DOI: 10.1186/s12935-021-01791-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Fu DW, Liu AC. LncRNA SBF2-AS1 Promotes Diffuse Large B-Cell Lymphoma Growth by Regulating FGFR2 via Sponging miR-494-3p. Cancer Manag Res 2021;13:571-8. [PMID: 33519236 DOI: 10.2147/CMAR.S284258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Schirrmacher V. Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 2020;8:E526. [PMID: 33266387 DOI: 10.3390/biomedicines8110526] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
|
17 |
Li S, Wang X. The potential roles of exosomal noncoding RNAs in osteosarcoma. J Cell Physiol 2021;236:3354-65. [PMID: 33044018 DOI: 10.1002/jcp.30101] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
18 |
Li C, Wang X, Yuan F, Zhao Z, Zhang B, Zhang J, Li W, Liu T. MiR-669b-3p regulates CD4+ T cell function by down-regulating indoleamine-2, 3-dioxygenase. Transpl Immunol 2020;62:101320. [PMID: 32687860 DOI: 10.1016/j.trim.2020.101320] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020;10:312. [PMID: 32754448 DOI: 10.3389/fcimb.2020.00312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|