BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de Castro GS, Simoes E, Lima JDCC, Ortiz-Silva M, Festuccia WT, Tokeshi F, Alcântara PS, Otoch JP, Coletti D, Seelaender M. Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers (Basel) 2019;11:E1264. [PMID: 31466311 DOI: 10.3390/cancers11091264] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023. [PMID: 36864755 DOI: 10.1002/jcsm.13073] [Reference Citation Analysis]
2 Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023;24. [PMID: 36902081 DOI: 10.3390/ijms24054651] [Reference Citation Analysis]
3 Soto ME, Pérez-Torres I, Rubio-Ruiz ME, Cano-Martínez A, Manzano-Pech L, Guarner-Lans V. Frailty and the Interactions between Skeletal Muscle, Bone, and Adipose Tissue-Impact on Cardiovascular Disease and Possible Therapeutic Measures. Int J Mol Sci 2023;24. [PMID: 36901968 DOI: 10.3390/ijms24054534] [Reference Citation Analysis]
4 Joshi M, Patel BM. Unveiling the Role of the Proton Gateway, Uncoupling Proteins (UCPs), in Cancer Cachexia. Cancers (Basel) 2023;15. [PMID: 36900198 DOI: 10.3390/cancers15051407] [Reference Citation Analysis]
5 Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Reference Citation Analysis]
6 Blum D, Vagnildhaug OM, Stene GB, Maddocks M, Sørensen J, Laird BJA, Prado CM, Skeidsvoll Solheim T, Arends J, Hopkinson J, Jones CA, Schlögl M. Top Ten Tips Palliative Care Clinicians Should Know About Cachexia. J Palliat Med 2023. [PMID: 36723498 DOI: 10.1089/jpm.2022.0598] [Reference Citation Analysis]
7 Manole E, Ceafalan LC, Gaina GF, Mosoia OA, Hinescu ME. Myokine Expression in Cancer Cachexia. Interdisciplinary Cancer Research 2023. [DOI: 10.1007/16833_2023_138] [Reference Citation Analysis]
8 Yang T, Gokulnath P, Meng X, Li G, Xiao J. Genome Editing to Abrogate Muscle Atrophy. Advances in Experimental Medicine and Biology 2023. [DOI: 10.1007/978-981-19-5642-3_11] [Reference Citation Analysis]
9 Yu Y, Ahmed A, Lai H, Cheng W, Yang J, Chang W, Chen L, Shan Y, Ma W. Review of the endocrine organ–like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1057930] [Reference Citation Analysis]
10 Byerley LO, Chang HM, Lorenzen B, Guidry J, Hardman WE. Impact of dietary walnuts, a nutraceutical option, on circulating markers of metabolic dysregulation in a rodent cachectic tumor model. Biomed Pharmacother 2022;155:113728. [PMID: 36152410 DOI: 10.1016/j.biopha.2022.113728] [Reference Citation Analysis]
11 Wang L, van Iersel LEJ, Pelgrim CE, Lu J, van Ark I, Leusink-Muis T, Gosker HR, Langen RCJ, Schols AMWJ, Argilés JM, van Helvoort A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue: In Vivo and In Vitro Studies. Cells 2022;11:2893. [PMID: 36139468 DOI: 10.3390/cells11182893] [Reference Citation Analysis]
12 Zhang B, Bi Q, Huang S, Lv S, Zong X, Wang M, Ji X. Baoyuan Jiedu decoction alleviating cancer cachexia–Induced muscle atrophy by regulating muscle mitochondrial function in ApcMin/+ mice. Front Pharmacol 2022;13:914597. [DOI: 10.3389/fphar.2022.914597] [Reference Citation Analysis]
13 Jo Y, Yeo M, Dao T, Kwon J, Yi H, Ryu D. Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia. Front Oncol 2022;12:942774. [DOI: 10.3389/fonc.2022.942774] [Reference Citation Analysis]
14 Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022;11:1931. [PMID: 35741060 DOI: 10.3390/cells11121931] [Reference Citation Analysis]
15 Raun SH, Ali MS, Han X, Henríquez-olguín C, Pham TCP, Knudsen JR, Willemsen ACH, Larsen S, Jensen TE, Langen R, Sylow L. AMPK is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice.. [DOI: 10.1101/2022.06.07.495096] [Reference Citation Analysis]
16 Dolly A, Lecomte T, Tabchouri N, Caulet M, Michot N, Anon B, Chautard R, Desvignes Y, Ouaissi M, Fromont-Hankard G, Dumas JF, Servais S. Pectoralis major muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer. J Cachexia Sarcopenia Muscle 2022;13:1837-49. [PMID: 35316572 DOI: 10.1002/jcsm.12984] [Reference Citation Analysis]
17 Ke JY, Liu ZY, Wang YH, Chen SM, Lin J, Hu F, Wang YF. Gypenosides regulate autophagy through Sirt1 pathway and the anti-inflammatory mechanism of mitochondrial autophagy in systemic lupus erythematosus. Bioengineered 2022;13:13384-97. [PMID: 36700474 DOI: 10.1080/21655979.2022.2066749] [Reference Citation Analysis]
18 Xu J, Li L, Ren J, Zhong X, Xie C, Zheng A, Abudukadier A, Tuerxun M, Zhang S, Tang L, Hairoula D, Zou X. Whole-Exome Sequencing Implicates the USP34 rs777591A > G Intron Variant in Chronic Obstructive Pulmonary Disease in a Kashi Cohort. Front Cell Dev Biol 2022;9:792027. [DOI: 10.3389/fcell.2021.792027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022;132:388-401. [PMID: 34941442 DOI: 10.1152/japplphysiol.00746.2021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
20 Alldritt I, Greenhaff PL, Wilkinson DJ. Metabolomics as an Important Tool for Determining the Mechanisms of Human Skeletal Muscle Deconditioning. Int J Mol Sci 2021;22:13575. [PMID: 34948370 DOI: 10.3390/ijms222413575] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Beltrà M, Pin F, Ballarò R, Costelli P, Penna F. Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells 2021;10:3150. [PMID: 34831373 DOI: 10.3390/cells10113150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
22 Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021;71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021;:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021;9:719643. [PMID: 34595171 DOI: 10.3389/fcell.2021.719643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Mao X, Gu Y, Sui X, Shen L, Han J, Wang H, Xi Q, Zhuang Q, Meng Q, Wu G. Phosphorylation of Dynamin-Related Protein 1 (DRP1) Regulates Mitochondrial Dynamics and Skeletal Muscle Wasting in Cancer Cachexia. Front Cell Dev Biol 2021;9:673618. [PMID: 34422804 DOI: 10.3389/fcell.2021.673618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Yano N, Zhao YT, Zhao TC. The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. Endocrines 2021;2:266-83. [DOI: 10.3390/endocrines2030025] [Reference Citation Analysis]
27 Liu H, Zang P, Lee II, Anderson B, Christiani A, Strait-Bodey L, Breckheimer BA, Storie M, Tewnion A, Krumm K, Li T, Irwin B, Garcia JM. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle 2021. [PMID: 34264027 DOI: 10.1002/jcsm.12743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Dai Y, Chen Y, Wei G, Zha L, Li X. Ivabradine protects rats against myocardial infarction through reinforcing autophagy via inhibiting PI3K/AKT/mTOR/p70S6K pathway. Bioengineered 2021;12:1826-37. [PMID: 33975512 DOI: 10.1080/21655979.2021.1925008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
29 Miao C, Zhang W, Feng L, Gu X, Shen Q, Lu S, Fan M, Li Y, Guo X, Ma Y, Liu X, Wang H, Zhang X. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids 2021;24:923-38. [PMID: 34094711 DOI: 10.1016/j.omtn.2021.04.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
30 Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021;10:588. [PMID: 33920468 DOI: 10.3390/antiox10040588] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
31 Kunz HE, Dorschner JM, Berent TE, Meyer T, Wang X, Jatoi A, Kumar R, Lanza IR. Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting. J Biol Chem 2020;295:17441-59. [PMID: 33453990 DOI: 10.1074/jbc.RA120.014884] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
32 Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021;12:252-73. [PMID: 33783983 DOI: 10.1002/jcsm.12678] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
33 Raun SH, Buch-Larsen K, Schwarz P, Sylow L. Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021;22:3469. [PMID: 33801684 DOI: 10.3390/ijms22073469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021;31. [PMID: 33733717 DOI: 10.4081/ejtm.2021.9743] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
35 Li C, Wu Q, Li Z, Wang Z, Tu Y, Chen C, Sun S, Sun S. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy. Exp Biol Med (Maywood) 2021;246:1156-66. [PMID: 33554647 DOI: 10.1177/1535370221990322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci 2021;22:1565. [PMID: 33557173 DOI: 10.3390/ijms22041565] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
37 Han Z, Chang C, Zhu W, Zhang Y, Zheng J, Kang X, Jin G, Gong Z. Role of SIRT2 in regulating the dexamethasone-activated autophagy pathway in skeletal muscle atrophy. Biochem Cell Biol 2021;99:562-9. [PMID: 33481678 DOI: 10.1139/bcb-2020-0445] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Alway SE. Linking mitochondrial dysfunction to sarcopenia. Sarcopenia 2021. [DOI: 10.1016/b978-0-12-822146-4.00004-1] [Reference Citation Analysis]
39 Wilcox-Hagerty J, Xu H, Hain BA, Arnold AC, Waning DL. Bone metastases induce metabolic changes and mitophagy in mice. Exp Physiol 2021;106:506-18. [PMID: 33369797 DOI: 10.1113/EP089130] [Reference Citation Analysis]
40 Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 2020;8:602901. [PMID: 33363161 DOI: 10.3389/fcell.2020.602901] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
41 Armstrong VS, Fitzgerald LW, Bathe OF. Cancer-Associated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int J Mol Sci 2020;21:E9268. [PMID: 33291708 DOI: 10.3390/ijms21239268] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
42 Lim S, Brown JL, Washington TA, Greene NP. Development and progression of cancer cachexia: Perspectives from bench to bedside. Sports Med Health Sci 2020;2:177-85. [PMID: 34447946 DOI: 10.1016/j.smhs.2020.10.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
43 Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF 3rd, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle 2020;11:1688-704. [PMID: 32918528 DOI: 10.1002/jcsm.12615] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
44 Halle JL, Counts BR, Carson JA. Exercise as a therapy for cancer-induced muscle wasting. Sports Medicine and Health Science 2020;2:186-94. [DOI: 10.1016/j.smhs.2020.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
45 Carraro U. 30 Years of Translational Mobility Medicine: 2020 Padua Muscle Days go virtual from Euganean Hills, November 19th to 21st. Eur J Transl Myol 2020;30:9437. [PMID: 33520146 DOI: 10.4081/ejtm.2020.9437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
46 Di Felice V, Coletti D, Seelaender M. Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology. Front Physiol 2020;11:592856. [PMID: 33192608 DOI: 10.3389/fphys.2020.592856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
47 de Castro GS, Correia-Lima J, Simoes E, Orsso CE, Xiao J, Gama LR, Gomes SP, Gonçalves DC, Costa RGF, Radloff K, Lenz U, Taranko AE, Bin FC, Formiga FB, de Godoy LGL, de Souza RP, Nucci LHA, Feitoza M, de Castro CC, Tokeshi F, Alcantara PSM, Otoch JP, Ramos AF, Laviano A, Coletti D, Mazurak VC, Prado CM, Seelaender M. Myokines in treatment-naïve patients with cancer-associated cachexia. Clin Nutr 2021;40:2443-55. [PMID: 33190987 DOI: 10.1016/j.clnu.2020.10.050] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
48 Massart IS, Paulissen G, Loumaye A, Lause P, Pötgens SA, Thibaut MM, Balan E, Deldicque L, Atfi A, Louis E, Gruson D, Bindels LB, Meuwis MA, Thissen JP. Marked Increased Production of Acute Phase Reactants by Skeletal Muscle during Cancer Cachexia. Cancers (Basel) 2020;12:E3221. [PMID: 33142864 DOI: 10.3390/cancers12113221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
49 Dolly A, Dumas JF, Servais S. Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know? J Cachexia Sarcopenia Muscle 2020;11:1413-28. [PMID: 33053604 DOI: 10.1002/jcsm.12633] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
50 Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs. Front Cell Dev Biol 2020;8:577010. [PMID: 33043011 DOI: 10.3389/fcell.2020.577010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
51 Zhong X, Zimmers TA. Sex Differences in Cancer Cachexia. Curr Osteoporos Rep 2020;18:646-54. [PMID: 33044689 DOI: 10.1007/s11914-020-00628-w] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
52 Song J, Seo H, Kim MR, Lee SJ, Ahn S, Song M. Active Compound of Pharbitis Semen (Pharbitis nil Seeds) Suppressed KRAS-Driven Colorectal Cancer and Restored Muscle Cell Function during Cancer Progression. Molecules 2020;25:E2864. [PMID: 32580297 DOI: 10.3390/molecules25122864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Görgülü K, Diakopoulos KN, Kaya-Aksoy E, Ciecielski KJ, Ai J, Lesina M, Algül H. The Role of Autophagy in Pancreatic Cancer: From Bench to the Dark Bedside. Cells 2020;9:E1063. [PMID: 32344698 DOI: 10.3390/cells9041063] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
54 Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2020;318:R296-310. [DOI: 10.1152/ajpregu.00147.2019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]