BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020;10:E854. [PMID: 32503337 DOI: 10.3390/biom10060854] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Oelschlaeger P. β-Lactamases: Sequence, Structure, Function, and Inhibition. Biomolecules 2021;11:986. [PMID: 34356610 DOI: 10.3390/biom11070986] [Reference Citation Analysis]
2 Farley AJM, Ermolovich Y, Calvopiña K, Rabe P, Panduwawala T, Brem J, Björkling F, Schofield CJ. Structural Basis of Metallo-β-lactamase Inhibition by N-Sulfamoylpyrrole-2-carboxylates. ACS Infect Dis 2021;7:1809-17. [PMID: 34003651 DOI: 10.1021/acsinfecdis.1c00104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021;29:441-57. [PMID: 32951986 DOI: 10.1016/j.tim.2020.08.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
4 Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Reference Citation Analysis]
5 Stavropoulou E, Voidarou CC, Rozos G, Vaou N, Bardanis M, Konstantinidis T, Vrioni G, Tsakris A. Antimicrobial Evaluation of Various Honey Types against Carbapenemase-Producing Gram-Negative Clinical Isolates. Antibiotics (Basel) 2022;11:422. [PMID: 35326885 DOI: 10.3390/antibiotics11030422] [Reference Citation Analysis]
6 Koteva K, Sychantha D, Rotondo CM, Hobson C, Britten JF, Wright GD. Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A. ACS Omega 2022;7:4170-84. [PMID: 35155911 DOI: 10.1021/acsomega.1c05757] [Reference Citation Analysis]
7 Legru A, Verdirosa F, Hernandez JF, Tassone G, Sannio F, Benvenuti M, Conde PA, Bossis G, Thomas CA, Crowder MW, Dillenberger M, Becker K, Pozzi C, Mangani S, Docquier JD, Gavara L. 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity. Eur J Med Chem 2021;226:113873. [PMID: 34626878 DOI: 10.1016/j.ejmech.2021.113873] [Reference Citation Analysis]
8 Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis 2021:S1473-3099(20)30868-9. [PMID: 34246322 DOI: 10.1016/S1473-3099(20)30868-9] [Reference Citation Analysis]
9 Chen C, Yang KW, Zhai L, Ding HH, Chigan JZ. Dithiocarbamates combined with copper for revitalizing meropenem efficacy against NDM-1-producing Carbapenem-resistant Enterobacteriaceae. Bioorg Chem 2022;118:105474. [PMID: 34794102 DOI: 10.1016/j.bioorg.2021.105474] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Rossi MA, Martinez V, Hinchliffe P, Mojica MF, Castillo V, Moreno DM, Smith R, Spellberg B, Drusano GL, Banchio C, Bonomo RA, Spencer J, Vila AJ, Mahler G. 2-Mercaptomethyl-thiazolidines use conserved aromatic-S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chem Sci 2021;12:2898-908. [PMID: 34164056 DOI: 10.1039/d0sc05172a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Levina EO, Khrenova MG. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition. Biochemistry (Mosc) 2021;86:S24-37. [PMID: 33827398 DOI: 10.1134/S0006297921140030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020;25:E4597. [PMID: 33050240 DOI: 10.3390/molecules25204597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
13 Chen C, Yang K. Ruthenium complexes as prospective inhibitors of metallo-β-lactamases to reverse carbapenem resistance. Dalton Trans 2020;49:14099-105. [PMID: 32996954 DOI: 10.1039/d0dt02430a] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kullappan M, Mallavarapu Ambrose J, Surapaneni KM. Understanding the binding conformation of ceftolozane/tazobactam with Metallo-β-lactamases VIM-5 and IMP-7 of Pseudomonas aeruginosa: A molecular docking and virtual screening process. J Mol Recognit 2021;34:e2898. [PMID: 33780080 DOI: 10.1002/jmr.2898] [Reference Citation Analysis]
15 Medina FE, Jaña GA. QM/MM Study of a VIM-1 Metallo-β-Lactamase Enzyme: The Catalytic Reaction Mechanism. ACS Catal 2022;12:36-47. [DOI: 10.1021/acscatal.1c04786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021;121:7957-8094. [PMID: 34129337 DOI: 10.1021/acs.chemrev.1c00138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Martínez MMB, Bonomo RA, Vila AJ, Maffía PC, González LJ. On the Offensive: the Role of Outer Membrane Vesicles in the Successful Dissemination of New Delhi Metallo-β-lactamase (NDM-1). mBio 2021;12:e0183621. [PMID: 34579567 DOI: 10.1128/mBio.01836-21] [Reference Citation Analysis]
18 Thomas PW, Cho EJ, Bethel CR, Smisek T, Ahn YC, Schroeder JM, Thomas CA, Dalby KN, Beckham JT, Crowder MW, Bonomo RA, Fast W. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect Dis 2022;8:811-24. [PMID: 35353502 DOI: 10.1021/acsinfecdis.1c00577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A. New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci 2020;21:E9308. [PMID: 33291334 DOI: 10.3390/ijms21239308] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
20 Hinchliffe P, Moreno DM, Rossi MA, Mojica MF, Martinez V, Villamil V, Spellberg B, Drusano GL, Banchio C, Mahler G, Bonomo RA, Vila AJ, Spencer J. 2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-β-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infect Dis 2021;7:2697-706. [PMID: 34355567 DOI: 10.1021/acsinfecdis.1c00194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
21 Gavara L, Legru A, Verdirosa F, Sevaille L, Nauton L, Corsica G, Mercuri PS, Sannio F, Feller G, Coulon R, De Luca F, Cerboni G, Tanfoni S, Chelini G, Galleni M, Docquier JD, Hernandez JF. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorg Chem 2021;113:105024. [PMID: 34116340 DOI: 10.1016/j.bioorg.2021.105024] [Reference Citation Analysis]