BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020;9:E980. [PMID: 33066023 DOI: 10.3390/antiox9100980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou S, Tan Q, Wen B, Bai Y, Che Q, Cao H, Guo J, Su Z. Galacto-Oligosaccharide Alleviates Alcohol-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation. Metabolites 2022;12:867. [DOI: 10.3390/metabo12090867] [Reference Citation Analysis]
2 Ali WA, Moselhy WA, Ibrahim MA, Amin MM, Kamel S, Eldomany EB. Protective effect of rutin and β-cyclodextrin against hepatotoxicity and nephrotoxicity induced by lambda-cyhalothrin in Wistar rats: biochemical, pathological indices and molecular analysis. Biomarkers 2022;:1-12. [PMID: 35658761 DOI: 10.1080/1354750X.2022.2087003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022;13:889792. [DOI: 10.3389/fphys.2022.889792] [Reference Citation Analysis]
4 Ogaly HA, Aldulmani SAA, Al-Zahrani FAM, Abd-Elsalam RM. D-Carvone Attenuates CCl4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. Biology (Basel) 2022;11:739. [PMID: 35625467 DOI: 10.3390/biology11050739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants (Basel) 2022;11:870. [PMID: 35624734 DOI: 10.3390/antiox11050870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Abdel-Rahman RF, Fayed HM, Ogaly HA, Hussein RA, Raslan MA. Phytoconstituents of Sansevieria suffruticosa N.E.Br. Leaves and Its Hepatoprotective Effect via Activation of the NRF2/ARE Signaling Pathway in an Experimentally Induced Liver Fibrosis Rat Model. Chem Biodivers 2022;19:e202100960. [PMID: 35266608 DOI: 10.1002/cbdv.202100960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Hong D, Song GY, Eom CB, Ahn J, Kim SM, Shim A, Han Y, Roh Y, Han CY, Bae EJ, Ko H, Yang YM. Loss of ERdj5 exacerbates oxidative stress in mice with alcoholic liver disease via suppressing Nrf2. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.03.027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Chen Y, Li T, Tan P, Shi H, Cheng Y, Cai T, Bai J, Du Y, Fu W. Kaempferol From Penthorum chinense Pursh Attenuates Hepatic Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Inflammation Through Activation of the Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2022;13:857015. [DOI: 10.3389/fphar.2022.857015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Shiraiwa M, Kitakaze T, Yamashita Y, Ukawa Y, Mukai K, Ashida H. Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells. Antioxidants 2022;11:675. [DOI: 10.3390/antiox11040675] [Reference Citation Analysis]
10 Kim M, Jeon J. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. IJMS 2022;23:2846. [DOI: 10.3390/ijms23052846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Kim EY, Lee JM. NRF2 Activation in Autophagy Defects Suppresses a Pharmacological Transactivation of the Nuclear Receptor FXR. Antioxidants 2022;11:370. [DOI: 10.3390/antiox11020370] [Reference Citation Analysis]
12 Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022;11:235. [PMID: 35204118 DOI: 10.3390/antiox11020235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Yuan J, Yu Z, Gao J, Luo K, Shen X, Cui B, Lu Z. Inhibition of GCN2 alleviates hepatic steatosis and oxidative stress in obese mice: Involvement of NRF2 regulation. Redox Biol 2021;49:102224. [PMID: 34954499 DOI: 10.1016/j.redox.2021.102224] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021;9:1256. [PMID: 34572442 DOI: 10.3390/biomedicines9091256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang R, Mu J. Arbutin attenuates ethanol-induced acute hepatic injury by the modulation of oxidative stress and Nrf-2/HO-1 signaling pathway. J Biochem Mol Toxicol 2021;:e22872. [PMID: 34346143 DOI: 10.1002/jbt.22872] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Kim JY, Choi Y, Leem J, Song JE. Heme Oxygenase-1 Induction by Cobalt Protoporphyrin Ameliorates Cholestatic Liver Disease in a Xenobiotic-Induced Murine Model. Int J Mol Sci 2021;22:8253. [PMID: 34361019 DOI: 10.3390/ijms22158253] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Zhao J, Ran M, Yang T, Chen L, Ji P, Xu X, Zhang L, Sun S, Liu X, Zhou S, Zhou L, Zhang J. Bicyclol Alleviates Signs of BDL-Induced Cholestasis by Regulating Bile Acids and Autophagy-Mediated HMGB1/p62/Nrf2 Pathway. Front Pharmacol 2021;12:686502. [PMID: 34366845 DOI: 10.3389/fphar.2021.686502] [Reference Citation Analysis]
18 Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021;2021:4784385. [PMID: 34306060 DOI: 10.1155/2021/4784385] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
19 Sykiotis GP. Keap1/Nrf2 Signaling Pathway. Antioxidants (Basel) 2021;10:828. [PMID: 34067331 DOI: 10.3390/antiox10060828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021;11:1384. [PMID: 34068057 DOI: 10.3390/ani11051384] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
21 Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021;10:174. [PMID: 33530432 DOI: 10.3390/antiox10020174] [Cited by in Crossref: 15] [Cited by in F6Publishing: 52] [Article Influence: 15.0] [Reference Citation Analysis]
22 Finamor IA, Bressan CA, Torres-Cuevas I, Rius-Pérez S, da Veiga M, Rocha MI, Pavanato MA, Pérez S. Long-Term Aspartame Administration Leads to Fibrosis, Inflammasome Activation, and Gluconeogenesis Impairment in the Liver of Mice. Biology (Basel) 2021;10:82. [PMID: 33499218 DOI: 10.3390/biology10020082] [Reference Citation Analysis]