BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, Holmlund JT, Anderson CM, Zepeda-Orozco D, Buatti JM, Spitz DR, Allen BG. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2021;10:1329. [PMID: 34572961 DOI: 10.3390/antiox10091329] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Ranjbar E, Tavakol Afshari J, KhajaviRad A, Ebrahimzadeh-Bideskan A, Shafieian R. Insights into the protective capacity of human dental pulp stem cells and its secretome in cisplatin-induced nephrotoxicity: effects on oxidative stress and histological changes. J Basic Clin Physiol Pharmacol 2022. [PMID: 36201655 DOI: 10.1515/jbcpp-2022-0159] [Reference Citation Analysis]
2 Li Q, Chen Z, Su L, Wu Y, Du W, Song J. Constructing turn-on bioluminescent probes for real-time imaging of reactive oxygen species during cisplatin chemotherapy. Biosens Bioelectron 2022;216:114632. [PMID: 35988429 DOI: 10.1016/j.bios.2022.114632] [Reference Citation Analysis]
3 Iskander A, Yan LJ. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD+-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022;12:1078. [PMID: 36008971 DOI: 10.3390/biom12081078] [Reference Citation Analysis]
4 Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Roles of Reactive Oxygen Species and Autophagy in the Pathogenesis of Cisplatin-Induced Acute Kidney Injury. Oxygen 2022;2:317-326. [DOI: 10.3390/oxygen2030022] [Reference Citation Analysis]
5 Gohar EY, Almutlaq RN, Fan C, Balkawade RS, Butt MK, Curtis LM. Does G Protein-Coupled Estrogen Receptor 1 Contribute to Cisplatin-Induced Acute Kidney Injury in Male Mice? IJMS 2022;23:8284. [DOI: 10.3390/ijms23158284] [Reference Citation Analysis]
6 Fontecha-barriuso M, Lopez-diaz AM, Guerrero-mauvecin J, Miguel V, Ramos AM, Sanchez-niño MD, Ruiz-ortega M, Ortiz A, Sanz AB. Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants 2022;11:1356. [DOI: 10.3390/antiox11071356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shen D, Guo M, Geng X, Yu J, Zhang Z, Lin J, Lin P, Ding X, Xu X. Magnesium Lithospermate B Protects Against Cisplatin-Induced Acute Kidney Injury via Alleviating Mitochondrial Dysfunction. DDDT 2022;Volume 16:2293-2304. [DOI: 10.2147/dddt.s358830] [Reference Citation Analysis]
8 Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie, Liu W, He F, Xu C, Cheng J. Receptor of Advanced Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty Acid Oxidation. Front Pharmacol 2022;13:907133. [PMID: 35712715 DOI: 10.3389/fphar.2022.907133] [Reference Citation Analysis]