BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021;10:537. [PMID: 33808211 DOI: 10.3390/antiox10040537] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023;143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023;12. [PMID: 36830059 DOI: 10.3390/antiox12020501] [Reference Citation Analysis]
3 Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023;131:8-17. [PMID: 36470373 DOI: 10.1016/j.niox.2022.11.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gatto C, Di Porzio A, Crescenzo R, Barrella V, Iossa S, Mazzoli A. Age-Dependent Skeletal Muscle Mitochondrial Response to Short-Term Increased Dietary Fructose. Antioxidants (Basel) 2023;12. [PMID: 36829857 DOI: 10.3390/antiox12020299] [Reference Citation Analysis]
5 Lewis CTA, Ochala J. Myosin Heavy Chain as a Novel Key Modulator of Striated Muscle Resting State. Physiology (Bethesda) 2023;38:0. [PMID: 36067133 DOI: 10.1152/physiol.00018.2022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Calella P, Cerullo G, Di Dio M, Liguori F, Di Onofrio V, Gallè F, Liguori G. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: A systematic review. Front Nutr 2022;9:1048258. [PMID: 36590230 DOI: 10.3389/fnut.2022.1048258] [Reference Citation Analysis]
7 Roberts JD, Lillis J, Pinto JM, Willmott AGB, Gautam L, Davies C, López-Samanes Á, Del Coso J, Chichger H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia(®)) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022;14. [PMID: 36501186 DOI: 10.3390/nu14235156] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Nancy Vargas-Mendoza, Ángel Morales-González, Eduardo Osiris Madrigal-Santillán, Marcelo Angeles-Valencia, Liliana Anguiano-Robledo, Laura Ligia González-López, Alejandra Sosa-Gómez, Tomás Fregoso-Aguilar, Cesar Esquivel-Chirino, Yahel Anahí Ruiz-Velazco-Benítez, José A Morales-González. Phytochemicals and modulation of exercise-induced oxidative stress: a novel overview of antioxidants. Am J Transl Res 2022;14. [PMID: 36505319] [Reference Citation Analysis]
9 Estébanez B, Visavadiya NP, Vargas JE, Rivera-viloria M, Khamoui AV, de Paz JA, Huang C. Resistance Training Modulates Reticulum Endoplasmic Stress, Independent of Oxidative and Inflammatory Responses, in Elderly People. Antioxidants 2022;11:2242. [DOI: 10.3390/antiox11112242] [Reference Citation Analysis]
10 Borzykh AA, Gaynullina DK, Shvetsova AA, Kiryukhina OO, Kuzmin IV, Selivanova EK, Nesterenko AM, Vinogradova OL, Tarasova OS. Voluntary wheel exercise training affects locomotor muscle, but not the diaphragm in the rat. Front Physiol 2022;13. [DOI: 10.3389/fphys.2022.1003073] [Reference Citation Analysis]
11 Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. Molecules 2022;27:6594. [PMID: 36235130 DOI: 10.3390/molecules27196594] [Reference Citation Analysis]
12 Bartra C, Jager LA, Alcarraz A, Meza-ramos A, Sangüesa G, Corpas R, Guasch E, Batlle M, Sanfeliu C. Antioxidant Molecular Brain Changes Parallel Adaptive Cardiovascular Response to Forced Running in Mice. Antioxidants 2022;11:1891. [DOI: 10.3390/antiox11101891] [Reference Citation Analysis]
13 Gómez-barroso M, Vargas-vargas MA, Peña-montes DJ, Cortés-rojo C, Saavedra-molina A, Sánchez-duarte E, Rodríguez-orozco AR, Montoya-pérez R. Comparative Effect of Three Different Exercise Intensities in Combination with Diazoxide on Contraction Capacity and Oxidative Stress of Skeletal Muscle in Obese Rats. Biology 2022;11:1367. [DOI: 10.3390/biology11091367] [Reference Citation Analysis]
14 Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. JCM 2022;11:4833. [DOI: 10.3390/jcm11164833] [Reference Citation Analysis]
15 El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022;23:8713. [PMID: 35955849 DOI: 10.3390/ijms23158713] [Reference Citation Analysis]
16 García-merino JA, de Lucas B, Herrera-rocha K, Moreno-pérez D, Montalvo-lominchar MG, Fernández-romero A, Santiago C, Pérez-ruiz M, Larrosa M. Flavanol-Rich Cocoa Supplementation Inhibits Mitochondrial Biogenesis Triggered by Exercise. Antioxidants 2022;11:1522. [DOI: 10.3390/antiox11081522] [Reference Citation Analysis]
17 Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022. [PMID: 35899483 DOI: 10.1111/brv.12885] [Reference Citation Analysis]
18 Di Meo S, Venditti P, Victor VM, Napolitano G. Harmful and Beneficial Role of ROS 2020. Oxidative Medicine and Cellular Longevity 2022;2022:1-3. [DOI: 10.1155/2022/9873652] [Reference Citation Analysis]
19 Park C, Lee H, Kim SO, Lee EW, Lee HT, Kwon HJ, Kim BW, Kim GY, Kim MR, Choi YH. The preventive effect of Mori Ramulus on oxidative stress-induced cellular damage in skeletal L6 myoblasts through Nrf2-mediated activation of HO-1. Toxicol Res 2023;39:25-36. [PMID: 36726826 DOI: 10.1007/s43188-022-00141-5] [Reference Citation Analysis]
20 Jung Y, Park S, Hong S. Study of the Antioxidant Effect of <italic>Ojayeonjong-hwan</italic>. J Int Korean Med 2022;43:344-362. [DOI: 10.22246/jikm.2022.43.3.344] [Reference Citation Analysis]
21 Alves HR, Lomba GSB, Gonçalves-de-albuquerque CF, Burth P. Irisin, Exercise, and COVID-19. Front Endocrinol 2022;13:879066. [DOI: 10.3389/fendo.2022.879066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Jeong M, Lim D, Kim SO, Park C, Leem S, Lee H, Kim G, Jeong S, Choi YH. Protection of Oxidative Stress-induced DNA Damage and Apoptosis by Rosmarinic Acid in Murine Myoblast C2C12 Cells. Biotechnol Bioproc E. [DOI: 10.1007/s12257-021-0248-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Chen L, Ru Q, Xiong Q, Yang J, Xu G, Wu Y. Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. Oxid Med Cell Longev 2022;2022:4445734. [PMID: 35480870 DOI: 10.1155/2022/4445734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Abdelsaid K, Sudhahar V, Harris RA, Das A, Youn SW, Liu Y, McMenamin M, Hou Y, Fulton D, Hamrick MW, Tang Y, Fukai T, Ushio-Fukai M. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: Role of exosomal SOD3. FASEB J 2022;36:e22177. [PMID: 35142393 DOI: 10.1096/fj.202101323R] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
25 Maciejczyk M, Zalewska A, Gryciuk M, Hodun K, Czuba M, Płoszczyca K, Charmas M, Sadowski J, Baranowski M, Tylzanowski P. Effect of Normobaric Hypoxia on Alterations in Redox Homeostasis, Nitrosative Stress, Inflammation, and Lysosomal Function following Acute Physical Exercise. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/4048543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022;10:507. [PMID: 35203715 DOI: 10.3390/biomedicines10020507] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Longobucco Y, Masini A, Marini S, Barone G, Fimognari C, Bragonzoni L, Dallolio L, Maffei F, de Cassia Marqueti R. Exercise and Oxidative Stress Biomarkers among Adult with Cancer: A Systematic Review. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/2097318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wang X, Shelton SD, Bordieanu B, Frank AR, Yi Y, Venigalla SSK, Gu Z, Lesner NP, Glogauer M, Chandel NS, Zhao H, Zhao Z, Mcfadden DG, Mishra P. Scinderin promotes fusion of electron transport chain dysfunctional muscle stem cells with myofibers. Nat Aging 2022;2:155-169. [DOI: 10.1038/s43587-021-00164-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Mcclean C, Davison GW. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants 2022;11:256. [DOI: 10.3390/antiox11020256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Yan X, Shen Z, Yu D, Zhao C, Zou H, Ma B, Dong W, Chen W, Huang D, Yu Z. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med 2022;178:59-75. [PMID: 34823019 DOI: 10.1016/j.freeradbiomed.2021.11.030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
31 Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. Front Rehabilit Sci 2021;2. [DOI: 10.3389/fresc.2021.782848] [Reference Citation Analysis]
32 Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules 2021;11:1742. [PMID: 34827740 DOI: 10.3390/biom11111742] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Thirupathi A, Gu Y, Pinho RA. Exercise Cuts Both Ways with ROS in Remodifying Innate and Adaptive Responses: Rewiring the Redox Mechanism of the Immune System during Exercise. Antioxidants (Basel) 2021;10:1846. [PMID: 34829717 DOI: 10.3390/antiox10111846] [Reference Citation Analysis]
34 Ding Q, Luo L, Yu L, Huang SL, Wang XQ, Zhang B. The critical role of glutathione redox homeostasis towards oxidation in ermanin-induced melanogenesis. Free Radic Biol Med 2021;176:392-405. [PMID: 34560247 DOI: 10.1016/j.freeradbiomed.2021.09.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021;10:1787. [PMID: 34829658 DOI: 10.3390/antiox10111787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Park C, Ji SY, Lee H, Choi SH, Kwon CY, Kim SY, Lee ET, Choo ST, Kim GY, Choi YH, Kim MR. Mori Ramulus Suppresses Hydrogen Peroxide-Induced Oxidative Damage in Murine Myoblast C2C12 Cells through Activation of AMPK. Int J Mol Sci 2021;22:11729. [PMID: 34769159 DOI: 10.3390/ijms222111729] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang F, Wang X, Liu Y, Zhang Z. Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxid Med Cell Longev 2021;2021:3846122. [PMID: 34630848 DOI: 10.1155/2021/3846122] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Lu Z, Xu Y, Song Y, Bíró I, Gu Y. A Mixed Comparisons of Different Intensities and Types of Physical Exercise in Patients With Diseases Related to Oxidative Stress: A Systematic Review and Network Meta-Analysis. Front Physiol 2021;12:700055. [PMID: 34421637 DOI: 10.3389/fphys.2021.700055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
39 Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ Pollut 2021;289:117904. [PMID: 34371264 DOI: 10.1016/j.envpol.2021.117904] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]