BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cartwright A, Jackson K, Morgan C, Anderson A, Britt DW. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy 2020;10:1018. [DOI: 10.3390/agronomy10071018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Tamang S, Rai S, Bhujel R, Bhattacharyya NK, Swain BP, Biswas J. A concise review on GO, rGO and metal oxide/rGO composites: Fabrication and their supercapacitor and catalytic applications. Journal of Alloys and Compounds 2023;947:169588. [DOI: 10.1016/j.jallcom.2023.169588] [Reference Citation Analysis]
2 Pedroso‐santana S, Fleitas‐salazar N. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Part & Part Syst Charact 2022. [DOI: 10.1002/ppsc.202200146] [Reference Citation Analysis]
3 Tryfon P, Kamou NN, Ntalli N, Mourdikoudis S, Karamanoli K, Karfaridis D, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NanoImpact 2022;28:100430. [PMID: 36206943 DOI: 10.1016/j.impact.2022.100430] [Reference Citation Analysis]
4 Elsawy MA, Mostafa MH. Antimicrobial Applications of Nanoparticles. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch19] [Reference Citation Analysis]
5 Dao PH, Nguyen TC, Nguyen AH, Nguyen XT, Ly TNL, Hoang THG, Dao HT, Thai H. Effect of zirconia nanoparticles modified by silane coupling agent on some properties of epoxy coating. Vietnam J Sci Technol 2022;60:664-674. [DOI: 10.15625/2525-2518/16999] [Reference Citation Analysis]
6 Dhanabalan K, Balasubramanian D, Rajamani R, Bellan CS, Wong LS, Djearamane S. Synthesis and Characterization of Magnesium Doped Ferric Sulphate Nanoparticles (Mg-Fe2SO3 NPs) for Agriculture Applications. J Exp Bio & Ag Sci 2022;10:773-780. [DOI: 10.18006/2022.10(4).773.780] [Reference Citation Analysis]
7 Doddamani JS, Hodlur RM, Rabinal MK. Melamine assisted large-scale and rapid synthesis of porous copper oxide nanostructures. emergent mater 2022;5:1089-1096. [DOI: 10.1007/s42247-021-00250-1] [Reference Citation Analysis]
8 Bunge A, Leoștean C, Radu T, Tripon SC, Borodi G, Turcu R. Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters. Magnetochemistry 2022;8:79. [DOI: 10.3390/magnetochemistry8080079] [Reference Citation Analysis]
9 Alhendal A, Rashad M, Husain A, Mouffuok F, Bumajdad A. A chromia-based sorbent for the enrichment of phosphotyrosine. Journal of Chromatography A 2022;1671:462991. [DOI: 10.1016/j.chroma.2022.462991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Deng C, Wang Y, Cantu JM, Valdes C, Navarro G, Cota-ruiz K, Hernandez-viezcas JA, Li C, Elmer WH, Dimkpa CO, White JC, Gardea-torresdey JL. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. NanoImpact 2022;26:100406. [DOI: 10.1016/j.impact.2022.100406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 C. S, Kumar SPJ, Chintagunta AD, Lichtfouse E, Naik B, P. R, Kumari K, Kumar S. Non-thermal plasmas for disease control and abiotic stress management in plants. Environ Chem Lett. [DOI: 10.1007/s10311-022-01399-9] [Reference Citation Analysis]
12 Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-najafabadi S. Surface modification of electrospun wound dressing material by Fe2O3 nanoparticles incorporating Lactobacillus strains for enhanced antimicrobial and antibiofilm activity. Surfaces and Interfaces 2022;28:101592. [DOI: 10.1016/j.surfin.2021.101592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Perea-vélez YS, González-chávez MDCA, Carrillo-gonzález R, López-luna J. Dissolution kinetics of citrate coated CoFe2O4 nanoparticles in soil solution. Environ Sci : Nano 2022;9:2954-2965. [DOI: 10.1039/d2en00330a] [Reference Citation Analysis]
14 Abu Shmeis RM. Nanotechnology in wastewater treatment. Environmental Nanotechnology: Implications and Applications 2022. [DOI: 10.1016/bs.coac.2021.11.002] [Reference Citation Analysis]
15 Palencia M, Otálora A, Espinosa-duque A. Polymer-metal oxide composites from renewable resources for agricultural and environmental applications. Renewable Polymers and Polymer-Metal Oxide Composites 2022. [DOI: 10.1016/b978-0-323-85155-8.00007-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rajwade J, Chikte R, Singh N, Paknikar K. Copper-based nanostructures: Antimicrobial properties against agri-food pathogens. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems 2022. [DOI: 10.1016/b978-0-12-823833-2.00031-3] [Reference Citation Analysis]
17 Nica IC, Stan MS, Dinischiotu A. Metal/metal oxides for electrochemical DNA biosensing. Metal Oxides for Biomedical and Biosensor Applications 2022. [DOI: 10.1016/b978-0-12-823033-6.00009-0] [Reference Citation Analysis]
18 Ullah A, Rahman L, Hussain SZ, Yazdani MB, Jilani A, Iqbal Khan D, Nasir MZ, Khan WS, Hussain I, Rehman A. Tin Oxide Supported on Nanostructured MnO2 as Efficient Catalyst for Nitrophenol Reduction: Kinetic Analysis and Their Application as Heterogeneous Catalyst. Mater Innov 2022;02:83-91. [DOI: 10.54738/mi.2022.2303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kanel SR, Nadagouda MN, Nakarmi A, Malakar A, Ray C, Pokhrel LR. Assessment of health, safety, and economics of surface-modified nanomaterials for catalytic applications. Surface Modified Nanomaterials for Applications in Catalysis 2022. [DOI: 10.1016/b978-0-12-823386-3.00009-x] [Reference Citation Analysis]
20 Prakash T, Ranjith Kumar E, Murugesan D, Alkhamis K, Al-ahmed ZA, Saad F, Mersal GA, El-metwaly NM. Surfactant effects on structural, optical and morphological characteristics of microwave irradiated CdO nanostructures. Ceramics International 2021;47:27274-84. [DOI: 10.1016/j.ceramint.2021.06.149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Sharma BK, Mehta BR, Shah EV, Chaudhari VP, Roy DR, Mondal Roy S. Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation. J Clust Sci. [DOI: 10.1007/s10876-021-02145-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Perea Vélez YS, Carrillo-gonzález R, González-chávez MDCA. Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05269-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
23 Chauhan M, Yadav S, Pasricha R, Malhotra P. Water Chestnut Peel Facilitated Biogenic Synthesis of Zinc Oxide Nanoparticles and their Catalytic Efficacy in the Ring Opening Reaction of Styrene Oxide. ChemistrySelect 2021;6:8315-8322. [DOI: 10.1002/slct.202102031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Kulkarni MB, Us J, Amreen K, Goel S. Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device: Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Trans Electron Devices 2021;68:4070-6. [DOI: 10.1109/ted.2021.3091954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Huseen RH, Taha AA, Ali IQ, Abdulhusein OM, Al-jawad SMH. Biological activity of gum Arabic-coated ferrous oxide nanoparticles. Mod Phys Lett B 2021;35:2150411. [DOI: 10.1142/s021798492150411x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Tran M, Nguyen L, Nguyen D, Le Cam-huong T, Dang C, Chi TTK, Nguyen T. A novel approach using plant embryos for green synthesis of silver nanoparticles as antibacterial and catalytic agent. Res Chem Intermed 2021;47:4613-33. [DOI: 10.1007/s11164-021-04548-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021;9:4620-42. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 23.5] [Reference Citation Analysis]
28 Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, Guo C, Li CM, Limbut W. Discrimination of dopamine by an electrode modified with negatively charged manganese dioxide nanoparticles decorated on a poly(3,4 ethylenedioxythiophene)/reduced graphene oxide composite. J Colloid Interface Sci 2021;597:314-24. [PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
29 Liu Y, Xiao Z, Chen F, Yue L, Zou H, Lyu J, Wang Z. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Sci Total Environ 2021;780:146578. [PMID: 34030327 DOI: 10.1016/j.scitotenv.2021.146578] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
30 Heikal YM, Şuţan NA. Mechanisms of Genotoxicity and Oxidative Stress Induced by Engineered Nanoparticles in Plants. Induced Genotoxicity and Oxidative Stress in Plants 2021. [DOI: 10.1007/978-981-16-2074-4_6] [Reference Citation Analysis]
31 Yadav N, Bhagat S, Singh S. Surface modification of metal oxide nanoparticles to realize biological applications. Reference Module in Materials Science and Materials Engineering 2021. [DOI: 10.1016/b978-0-12-822425-0.00018-x] [Reference Citation Analysis]
32 Šebesta M, Nemček L, Urík M, Kolenčík M, Bujdoš M, Hagarová I, Matúš P. Distribution of TiO2 Nanoparticles in Acidic and Alkaline Soil and Their Accumulation by Aspergillus niger. Agronomy 2020;10:1833. [DOI: 10.3390/agronomy10111833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]